Estimation of functional diversity and species traits from ecological monitoring data

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Alexey Ryabov - , Professur für Forstliche Biometrie und Systemanalyse, Helmholtz-Institut für Funktionelle Marine Biodiversität (HIFMB) , Carl von Ossietzky Universität Oldenburg (Autor:in)
  • Bernd Blasius - , Helmholtz-Institut für Funktionelle Marine Biodiversität (HIFMB) , Carl von Ossietzky Universität Oldenburg (Autor:in)
  • Helmut Hillebrand - , Helmholtz-Institut für Funktionelle Marine Biodiversität (HIFMB) , Carl von Ossietzky Universität Oldenburg, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (Autor:in)
  • Irina Olenina - , Klaipėda University, Lithuanian Environmental Protection Agency (Autor:in)
  • Thilo Gross - , Helmholtz-Institut für Funktionelle Marine Biodiversität (HIFMB) , Carl von Ossietzky Universität Oldenburg, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (Autor:in)

Abstract

The twin crises of climate change and biodiversity loss define a strong need for functional diversity monitoring. While the availability of high-quality ecological monitoring data is increasing, the quantification of functional diversity so far requires the identification of species traits, for which data are harder to obtain. However, the traits that are relevant for the ecological function of a species also shape its performance in the environment and hence, should be reflected indirectly in its spatiotemporal distribution. Thus, it may be possible to reconstruct these traits from a sufficiently extensive monitoring dataset. Here, we use diffusion maps, a deterministic and de facto parameter-free analysis method, to reconstruct a proxy representation of the species’ traits directly from monitoring data and use it to estimate functional diversity. We demonstrate this approach with both simulated data and real-world phytoplankton monitoring data from the Baltic Sea. We anticipate that wider application of this approach to existing data could greatly advance the analysis of changes in functional biodiversity.

Details

OriginalspracheEnglisch
Aufsatznummere2118156119
FachzeitschriftProceedings of the National Academy of Sciences of the United States of America
Jahrgang119
Ausgabenummer43
PublikationsstatusVeröffentlicht - 25 Okt. 2022
Peer-Review-StatusJa

Externe IDs

PubMed 36256813

Schlagworte

Ziele für nachhaltige Entwicklung

ASJC Scopus Sachgebiete

Schlagwörter

  • data science, diffusion map, ecological monitoring, functional diversity, phytoplankton