EPPA numbers of graphs
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
If G is a graph, A and B its induced subgraphs, and f:A→B an isomorphism, we say that f is a partial automorphism of G. In 1992, Hrushovski proved that graphs have the extension property for partial automorphisms (EPPA, also called the Hrushovski property), that is, for every finite graph G there is a finite graph H, an EPPA-witness for G, such that G is an induced subgraph of H and every partial automorphism of G extends to an automorphism of H. The EPPA number of a graph G, denoted by eppa(G), is the smallest number of vertices of an EPPA-witness for G, and we put eppa(n)=max{eppa(G):|G|=n}. In this note we review the state of the area, prove several lower bounds (in particular, we show that eppa(n)≥[Formula presented], thereby identifying the correct base of the exponential) and pose many open questions. We also briefly discuss EPPA numbers of hypergraphs, directed graphs, and Kk-free graphs.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 203-224 |
Seitenumfang | 22 |
Fachzeitschrift | Journal of combinatorial theory. Series B |
Jahrgang | 170 |
Frühes Online-Datum | 3 Okt. 2024 |
Publikationsstatus | Elektronische Veröffentlichung vor Drucklegung - 3 Okt. 2024 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- EPPA, Graphs, Hrushovski property, Partial automorphisms, Permutation groups, Random graphs