Enumeration and limit laws of series-parallel graphs
Publikation: Vorabdruck/Dokumentation/Bericht › Vorabdruck (Preprint)
Beitragende
Abstract
We show that the number $g_n$ of labelled series-parallel graphs on $n$ vertices is asymptotically $g_n \sim g\cdot n^{-5/2} \gamma^n n!$, where $\gamma$ and $g$ are explicit computable constants. We show that the number of edges in random series-parallel graphs is asymptotically normal with linear mean and variance, and that the number of edges is sharply concentrated around its expected value. Similar results are proved for labelled outerplanar graphs and for graphs not containing $K_{2,3}$ as a minor.
Details
Originalsprache | Undefiniert |
---|---|
Publikationsstatus | Veröffentlicht - 19 Dez. 2005 |
Extern publiziert | Ja |
No renderer: customAssociatesEventsRenderPortal,dk.atira.pure.api.shared.model.researchoutput.WorkingPaper
Externe IDs
ORCID | /0000-0001-8228-3611/work/142659292 |
---|
Schlagworte
Schlagwörter
- math.CO, 05A16; 05C30