Enumeration and limit laws of series-parallel graphs

Publikation: Vorabdruck/Dokumentation/BerichtVorabdruck (Preprint)

Beitragende

  • Manuel Bodirsky - , Humboldt-Universität zu Berlin (Autor:in)
  • Omer Gimenez - (Autor:in)
  • Mihyun Kang - (Autor:in)
  • Marc Noy - (Autor:in)

Abstract

We show that the number $g_n$ of labelled series-parallel graphs on $n$ vertices is asymptotically $g_n \sim g\cdot n^{-5/2} \gamma^n n!$, where $\gamma$ and $g$ are explicit computable constants. We show that the number of edges in random series-parallel graphs is asymptotically normal with linear mean and variance, and that the number of edges is sharply concentrated around its expected value. Similar results are proved for labelled outerplanar graphs and for graphs not containing $K_{2,3}$ as a minor.

Details

OriginalspracheUndefiniert
PublikationsstatusVeröffentlicht - 19 Dez. 2005
Extern publiziertJa
No renderer: customAssociatesEventsRenderPortal,dk.atira.pure.api.shared.model.researchoutput.WorkingPaper

Externe IDs

ORCID /0000-0001-8228-3611/work/142659292

Schlagworte

Schlagwörter

  • math.CO, 05A16; 05C30