Entwicklung von Dünnglas-Kunststoff-Hybridplatten für das Bauwesen

Publikation: Hochschulschrift/AbschlussarbeitDissertation

Abstract

Moderne architektonische Fassadengestaltungen und Ganzglaskonstruktionen fordern immer häufiger entmaterialisiert wirkende Ansichten mit maximaler Transparenz für eine edle Erscheinung und einen hohen Grad an natürlicher Belichtung. Damit gehen große Spannweiten einher. Diese führen zu stark dimensionierten Glasaufbauten und bringen hohes Eigengewicht in die Konstruktion ein. Die Verfügbarkeit von Dünnglas in bautechnisch relevanten Abmessungen ermöglicht neue gewichtssparende Konstruktionsprinzipien und innovative Materialkombinationen. Dünnglas-Kunststoff-Hybridplatten bestehen aus einem leichten transparenten Kunststoffkern mit außenliegenden kratzbeständigen und dauerhaften Deckschichten aus Dünnglas. Sie bieten eine hohe Steifigkeit, Dauerhaftigkeit und volle Transparenz bei geringem Eigengewicht. Die Aushärtung der Ausgangskomponenten des Kunststoffkerns erfolgt direkt zwischen den Deckschichten und erzeugt dadurch einen vollflächigen Verbund zwischen Glas und Kunststoff ohne zusätzliche Zwischenschichten. Im Bauwesen sind Dünnglas-Kunststoff-Hybridplatten bislang unbekannt. Es liegen weder ausreichend Kenntnisse zu den Material- und Verbundeigenschaften vor noch sind die Eigenschaften als Bauprodukt entsprechend den hohen strukturellen und sicherheitstechnischen Anforderungen sowie den Ansprüchen an die Dauerhaftigkeit und an die optischen Eigenschaften nachgewiesen. Darüber hinaus fehlen konkrete Verbindungskonzepte zur Integration in das Bauwesen, um das Leichtbaupotenzial für entmaterialisiert wirkende transparente Konstruktionen auszunutzen. Im Rahmen dieser Arbeit werden erstmals Dünnglas-Kunststoff-Hybridplatten als innovatives Leichtbauprodukt systematisch untersucht und in das Bauwesen eingeordnet. Experimentelle und numerische Untersuchungen charakterisieren die Material- und Verbundeigenschaften mit zwei, am Markt verfügbaren, Kunststoffkernmaterialien – Polymethylmethacrylat (PMMA) und Polyurethan (PU), die jeweils für ein unterschiedliches Eigenschaftsspektrum stehen. Darüber hinaus wird zur Umsetzung maximaler Transparenz eine materialgerechte Verbindungstechnik entwickelt und deren mechanische Tragfähigkeiten charakterisiert. Zunächst werden in experimentellen Kleinteilprüfungen die thermophysikalischen und mechanischen Kennwerte der reinen Kunststoffkernmaterialien für die Beschreibung des Tragverhaltens im Verbund ermittelt. Anhand der Ergebnisse werden das PMMA als steifes, dauerhaftes, aber sprödes Material und das PU als vergleichsweise flexibles, zähes Material charakterisiert. Die experimentellen Untersuchungen zum Verbundverhalten fokussieren sich auf die Anforderungen für den Einsatz im Bauwesen. Eine numerische Strukturanalyse erweitert die Ergebnisse zum Tragverhalten und klärt offengebliebene Fragestellungen zum thermischen Ausdehnungsverhalten. Die Ergebnisse zeigen, dass mit Dünnglas-Kunststoff-Hybridplatten ein effizientes Tragverhalten und eine signifikante Gewichtsreduktion gegenüber herkömmlichem monolithischem Glas und Verbundglas erreicht wird. Anhand der spezifizierten Verbundeigenschaften werden resultierende Anwendungspotenziale entsprechend der Materialkombination abgeleitet. Die weiterführende Entwicklung einer tragfähig in den Kunststoffkern integrierten Verbindungstechnik bietet innovative Anbindungsmöglichkeiten für Dünnglas-Kunststoff-Hybridplatten im Strukturleichtbau. Die Funktionsweise wurde anhand eines Konstruktionsbeispiels auf der „glasstec 2022“ demonstriert. Die vorliegende Arbeit beinhaltet eine strukturierte Kennwertsammlung zur erstmaligen ingenieurmäßigen Beschreibung des Material- und Verbundverhaltens von Dünnglas-Kunststoff-Hybridplatten mit zwei unterschiedlichen Kunststoffkernmaterialien. Die Materialkombination aus Dünnglas und PMMA-Kunststoffkern erzielt die größte Materialeffizienz für eine effektive Gewichtsreduktion und erfüllt die grundlegenden Anforderungen aus dem Bauwesen. Anhand der weiterführend entwickelten konstruktiven Verbindungstechnik wird ein breiter Anwendungsbereich erschlossen. Mit den Ergebnissen dieser Arbeit werden somit die Grundlagen für die Einführung als Bauprodukt und für eine gewichtssparende Konstruktionsweise zur Umsetzung maximaler Transparenz geschaffen.

Details

OriginalspracheDeutsch
QualifizierungsstufeDr.-Ing.
Gradverleihende Hochschule
Betreuer:in / Berater:in
  • Weller, Bernhard, Betreuer:in
Datum der Verteidigung (Datum der Urkunde)26 Juni 2023
PublikationsstatusVeröffentlicht - 19 Juli 2023
No renderer: customAssociatesEventsRenderPortal,dk.atira.pure.api.shared.model.researchoutput.Thesis

Schlagworte

Forschungsprofillinien der TU Dresden

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Dünnglas, Kunststoff, Polymer, Leichtbau, Materialeffizienz, Sandwichverbund, Glasbau, Verbundglas, thin glass, plastic, polymer, lightweight, material efficiency, sandwich structure, structural glass, laminated glass