Enhancing the stability of DNA origami nanostructures: staple strand redesign versus enzymatic ligation

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Saminathan Ramakrishnan - , Universität Paderborn, National Institutes of Health (NIH) (Autor:in)
  • Leonard Schaerfen - , Technische Universität Dresden, B CUBE Center for Molecular and Cellular Bioengineering (Autor:in)
  • Kristin Hunold - , Technische Universität Dresden, B CUBE Center for Molecular and Cellular Bioengineering (Autor:in)
  • Sebastian Fricke - , Universität Paderborn (Autor:in)
  • Guido Grundmeier - , Universität Paderborn (Autor:in)
  • Michael Schlierf - , Professur für Molekulare Biophysik, Nanoanalytische Methoden (NFoG) (Autor:in)
  • Adrian Keller - , Universität Paderborn (Autor:in)
  • Georg Krainer - , Professur für Molekulare Biophysik, University of Cambridge (Autor:in)

Abstract

DNA origami structures have developed into versatile tools in molecular sciences and nanotechnology. Currently, however, many potential applications are hindered by their poor stability, especially under denaturing conditions. Here we present and evaluate two simple approaches to enhance DNA origami stability. In the first approach, we elevated the melting temperature of nine critical staple strands by merging the oligonucleotides with adjacent sequences. In the second approach, we increased the global stability by enzymatically ligating all accessible staple strand ends directly. By monitoring the gradual urea-induced denaturation of a prototype triangular DNA origami modified by these approaches using atomic force microscopy, we show that rational redesign of a few, critical staple strands leads to a considerable increase in overall stability at high denaturant concentration and elevated temperatures. In addition, enzymatic ligation yields DNA nanostructures with superior stability at up to 37 degrees C and in the presence of 6 M urea without impairing their shape. This bio-orthogonal approach is readily adaptable to other DNA origami structures without the need for synthetic nucleotide modifications when structural integrity under harsh conditions is required.

Details

OriginalspracheEnglisch
Seiten (von - bis)16270-16276
Seitenumfang7
FachzeitschriftNanoscale
Jahrgang11
Ausgabenummer35
PublikationsstatusVeröffentlicht - 21 Sept. 2019
Peer-Review-StatusJa

Externe IDs

Scopus 85072133923
ORCID /0000-0002-6209-2364/work/142237625

Schlagworte

Schlagwörter

  • IN-VIVO