Enhancing the Carrier Transport in Monolayer MoS2 Through Interlayer Coupling with 2D Covalent Organic Frameworks.

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

The coupling of different 2D materials (2DMs) to form van der Waals heterostructures (vdWHs) is a powerful strategy for adjusting the electronic properties of 2D semiconductors, for applications in opto-electronics and quantum computing. 2D molybdenum disulfide (MoS 2) represents an archetypical semiconducting, monolayer thick versatile platform for the generation of hybrid vdWH with tunable charge transport characteristics through its interfacing with molecules and assemblies thereof. However, the physisorption of (macro)molecules on 2D MoS 2 yields hybrids possessing a limited thermal stability, thereby jeopardizing their technological applications. Herein, the rational design and optimized synthesis of 2D covalent organic frameworks (2D-COFs) for the generation of MoS 2/2D-COF vdWHs exhibiting strong interlayer coupling effects are reported. The high crystallinity of the 2D-COF films makes it possible to engineer an ultrastable periodic doping effect on MoS 2, boosting devices’ field-effect mobility at room temperature. Such a performance increase can be attributed to the synergistic effect of the efficient interfacial electron transfer process and the pronounced suppression of MoS 2’s lattice vibration. This proof-of-concept work validates an unprecedented approach for the efficient modulation of the electronic properties of 2D transition metal dichalcogenides toward high-performance (opto)electronics for CMOS digital circuits.

Details

OriginalspracheEnglisch
Aufsatznummer2305882
Seiten (von - bis)e2305882
FachzeitschriftAdvanced Materials
Jahrgang36
Ausgabenummer1
PublikationsstatusElektronische Veröffentlichung vor Drucklegung - 10 Sept. 2023
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-8121-8041/work/143073974
ORCID /0000-0001-6419-384X/work/143075651
Scopus 85177560669

Schlagworte