Enhancing Shared Autonomy in Teleoperation under Network Delay: Transparency- and Confidence-Aware Arbitration

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Basak Gulecyuz - , Technische Universität München, Centre for Tactile Internet with Human-in-the-Loop (CeTI) (Autor:in)
  • Ribin Balachandran - , Deutsches Zentrum für Luft- und Raumfahrt (DLR) e.V. (Autor:in)
  • Michael Panzirsch - , Deutsches Zentrum für Luft- und Raumfahrt (DLR) e.V. (Autor:in)
  • Harsimran Singh - , Deutsches Zentrum für Luft- und Raumfahrt (DLR) e.V., Centre for Tactile Internet with Human-in-the-Loop (CeTI) (Autor:in)
  • Thomas Hulin - , Deutsches Zentrum für Luft- und Raumfahrt (DLR) e.V., Centre for Tactile Internet with Human-in-the-Loop (CeTI) (Autor:in)
  • Xiao Xu - , Technische Universität München (Autor:in)
  • Eckehard Steinbach - , Technische Universität München, Centre for Tactile Internet with Human-in-the-Loop (CeTI) (Autor:in)

Abstract

Shared autonomy bridges human expertise with machine intelligence, yet existing approaches often overlook the impact of teleoperation delays. To address this gap, we propose a novel shared autonomy approach that enables robots to gradually learn from teleoperated demonstrations while adapting to network delays. Our method improves intent prediction by accounting for delayed feedback to the human operator and adjusts the arbitration function to balance reduced human confidence due to delay with confidence in learned autonomy. To ensure system stability, which might be compromised by delay and arbitration of human and autonomy control forces, we introduce a three-port extension of the Time-Domain Passivity Approach with Energy Reflection (TDPA-ER). Experimental validation with 12 participants demonstrated improvements in intent prediction accuracy, task performance, and the quality of final learned autonomy, highlighting the potential of our approach to enhance teleoperation and learning quality in remote environments.

Details

OriginalspracheEnglisch
Seiten (von - bis)9654-9661
Seitenumfang8
FachzeitschriftIEEE Robotics and Automation Letters
Jahrgang10
Ausgabenummer10
Frühes Online-DatumAug. 2025
PublikationsstatusVeröffentlicht - Okt. 2025
Peer-Review-StatusJa

Schlagworte