Enhancing mass spectrometry imaging accessibility using convolutional autoencoders for deriving hypoxia-associated peptides from tumors

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Verena Bitto - (Autor:in)
  • Pia Hoenscheid - , Institut für Pathologie, Nationales Centrum für Tumorerkrankungen Dresden (Autor:in)
  • Maria Jose Besso - (Autor:in)
  • Christian Sperling - , Institut für Pathologie, Nationales Zentrum für Tumorerkrankungen (NCT) Dresden (Autor:in)
  • Ina Kurth - , Deutsches Krebsforschungszentrum (DKFZ), OncoRay - National Centre for Radiation Research in Oncology, Deutsches Konsortium für Translationale Krebsforschung (DKTK) - Heidelberg (Autor:in)
  • Michael Baumann - , OncoRay - Nationales Zentrum für Strahlenforschung in der Onkologie, Deutsches Konsortium für Translationale Krebsforschung (DKTK) - Heidelberg, Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Benedikt Brors - (Autor:in)

Abstract

Mass spectrometry imaging (MSI) allows to study cancer's intratumoral heterogeneity through spatially-resolved peptides, metabolites and lipids. Yet, in biomedical research MSI is rarely used for biomarker discovery. Besides its high dimensionality and multicollinearity, mass spectrometry (MS) technologies typically output mass-to-charge ratio values but not the biochemical compounds of interest. Our framework makes particularly low-abundant signals in MSI more accessible. We utilized convolutional autoencoders to aggregate features associated with tumor hypoxia, a parameter with significant spatial heterogeneity, in cancer xenograft models. We highlight that MSI captures these low-abundant signals and that autoencoders can preserve them in their latent space. The relevance of individual hyperparameters is demonstrated through ablation experiments, and the contribution from original features to latent features is unraveled. Complementing MSI with tandem MS from the same tumor model, multiple hypoxia-associated peptide candidates were derived. Compared to random forests alone, our autoencoder approach yielded more biologically relevant insights for biomarker discovery.

Details

OriginalspracheEnglisch
Aufsatznummer57
Fachzeitschriftnpj systems biology and applications
Jahrgang10
Ausgabenummer1
PublikationsstatusVeröffentlicht - 27 Mai 2024
Peer-Review-StatusJa

Externe IDs

Scopus 85194518703

Schlagworte