Energy spaces, Dirichlet forms and capacities in a nonlinear setting
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
In this article we study lower semicontinuous, convex functionals on real Hilbert spaces. In the first part of the article we construct a Banach space that serves as the energy space for such functionals. In the second part we study nonlinear Dirichlet forms, as defined by Cipriani and Grillo, and show, as it is well known in the bilinear case, that the energy space of such forms is a lattice. We define a capacity and introduce the notion quasicontinuity associated with these forms and prove several results, which are well known in the bilinear case.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 159-179 |
Seitenumfang | 21 |
Fachzeitschrift | Potential Analysis |
Jahrgang | 58 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - Jan. 2023 |
Peer-Review-Status | Ja |
Externe IDs
Scopus | 85108201482 |
---|---|
Mendeley | dc22af37-cb0a-3575-9bd8-41c402169361 |
WOS | 000663240800003 |
Schlagworte
DFG-Fachsystematik nach Fachkollegium
ASJC Scopus Sachgebiete
Schlagwörter
- Capacity, Nonlinear Dirichlet form, Nonlinear Semigroup Theory, Quasicontinuity