Energy spaces, Dirichlet forms and capacities in a nonlinear setting

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

In this article we study lower semicontinuous, convex functionals on real Hilbert spaces. In the first part of the article we construct a Banach space that serves as the energy space for such functionals. In the second part we study nonlinear Dirichlet forms, as defined by Cipriani and Grillo, and show, as it is well known in the bilinear case, that the energy space of such forms is a lattice. We define a capacity and introduce the notion quasicontinuity associated with these forms and prove several results, which are well known in the bilinear case.

Details

OriginalspracheEnglisch
Seiten (von - bis)159-179
Seitenumfang21
FachzeitschriftPotential Analysis
Jahrgang58
Ausgabenummer1
PublikationsstatusVeröffentlicht - Jan. 2023
Peer-Review-StatusJa

Externe IDs

Scopus 85108201482
Mendeley dc22af37-cb0a-3575-9bd8-41c402169361
WOS 000663240800003

Schlagworte

DFG-Fachsystematik nach Fachkollegium

ASJC Scopus Sachgebiete

Schlagwörter

  • Capacity, Nonlinear Dirichlet form, Nonlinear Semigroup Theory, Quasicontinuity

Bibliotheksschlagworte