End-to-end brain cancer diagnosis using high-resolution fiber endoscopy with a learning-based digital twin

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

Rapid diagnosis is crucial to cancer treatment. Multi-core fibers (MCF) are slim and enable access to deep tissue for all-optical biopsies in real-time. Deep neural network (DNN)-based image reconstruction can depixelate structural artifacts and enhance spatial resolution beyond physical limitations. However, limited available tissue samples for training and simulator performance for MCF imaging make DNN-assisted fiber endoscopy for in vivo brain cancer diagnosis still challenging. Here we propose using a digital twin to solve these difficulties. A dataset is simulated for pre-training a MCF reconstruction network. Then transfer learning is applied to the network on a few ten experimental image pairs of glioblastoma samples. The results show, even when transfer learning on only 10 experimental image pairs, the mean structural similarity value of the test set can be increased from 0.547 to 0.932. The reconstructed images can achieve a comparable resolution with widefield microscopes when increasing the data size to 50, which are hundreds of times less than the training from scratch. The digital twin provides an efficient and highly feasible approach towards minimally invasive all-optical biopsies in neurosurgeries.

Details

OriginalspracheEnglisch
TitelAdvanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XXIII
Redakteure/-innenCaroline Boudoux, James W. Tunnell
Herausgeber (Verlag)SPIE - The international society for optics and photonics
ISBN (elektronisch)9781510683600
PublikationsstatusVeröffentlicht - 2025
Peer-Review-StatusJa

Konferenz

TitelAdvanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XXIII
Veranstaltungsnummer23
Dauer25 - 27 Januar 2025
OrtThe Moscone Center San Francisco
StadtSan Francisco
LandUSA/Vereinigte Staaten

Externe IDs

ORCID /0000-0002-8321-7488/work/184004954
ORCID /0000-0002-6603-5375/work/184006207

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • brain cancer diagnostics, deep learning, digital twin, endoscopy, fiber bundle, high-resolution reconstruction, Multi-core fiber, neural network