Endothelial cell responses to castor oil-based polyurethane substrates functionalized by direct laser ablation

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • L. R. X. Cortella - (Autor:in)
  • I. A. Cestari - (Autor:in)
  • D. Guenther - (Autor:in)
  • A. F. Lasagni - , Professur für Laserbasierte Fertigung, Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • I. N. Cestari - (Autor:in)

Abstract

Surface-induced thrombosis and lack of endothelialization are major drawbacks that hamper the widespread application of polyurethanes for the fabrication of implantable cardiovascular devices. Endothelialization of the blood-contacting surfaces of these devices may avoid thrombus formation and may be implemented by strategies that introduce micro and submicron patterns that favor adhesion and growth of endothelial cells. In this study, we used laser radiation to directly introduce topographical patterns in the low micrometer range on castor oil-based polyurethane, which is currently employed to fabricate cardiovascular devices. We have investigated cell adhesion, proliferation, morphology and alignment in response to these topographies. Reported results show that line-like and pillar-like patterns improved adhesion and proliferation rate of cultured endothelial cells. The line-like pattern with 1 mu m groove periodicity was the most efficient to enhance cell adhesion and induced marked polarization and alignment. Our study suggests the viability of using laser radiation to functionalize PU-based implants by the introduction of specific microtopography to facilitate the development of a functional endothelium on target surfaces.

Details

OriginalspracheEnglisch
Aufsatznummer065010
Seitenumfang12
FachzeitschriftBiomedical materials
Jahrgang12
Ausgabenummer6
PublikationsstatusVeröffentlicht - Dez. 2017
Peer-Review-StatusJa

Externe IDs

PubMed 28762961
Scopus 85034219430

Schlagworte

Schlagwörter

  • Blood-contacting devices, Castor oil-based polyurethane, Endothelial cell, Laser ablation, Surface patterns