Embedded Named Entity Recognition using Probing Classifiers

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

Streaming text generation, has become a common way of increasing the responsiveness of language model powered applications such as chat assistants. At the same time, extracting semantic information from generated text is a useful tool for applications such as automated fact checking or retrieval augmented generation. Currently, this requires either separate models during inference, which increases computational cost, or destructive fine-tuning of the language model. Instead, we propose an approach called EMBER which enables streaming named entity recognition in decoder-only language models without fine-tuning them and while incurring minimal additional computational cost at inference time. Specifically, our experiments show that EMBER maintains high token generation rates, with only a negligible decrease in speed of around 1% compared to a 43.64% slowdown measured for a baseline. We make our code and data available online, including a toolkit for training, testing, and deploying efficient token classification models optimized for streaming text generation.

Details

OriginalspracheEnglisch
Titel"Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Redakteure/-innenYaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
ErscheinungsortMiami, Florida, USA
Herausgeber (Verlag)Association for Computational Linguistics (ACL)
Seiten17830-17850
Seitenumfang21
ISBN (elektronisch)9798891761643
PublikationsstatusVeröffentlicht - Nov. 2024
Peer-Review-StatusJa

Konferenz

Titel2024 Conference on Empirical Methods in Natural Language Processing
KurztitelEMNLP 2024
Dauer12 - 16 November 2024
Webseite
BekanntheitsgradInternationale Veranstaltung
OrtHyatt Regency Miami Hotel & Online
StadtMiami
LandUSA/Vereinigte Staaten

Externe IDs

Scopus 85217785401
ORCID /0000-0001-5458-8645/work/193180539