Electrolysis in reduced gravitational environments: current research perspectives and future applications

Publikation: Beitrag in FachzeitschriftÜbersichtsartikel (Review)BeigetragenBegutachtung

Beitragende

  • Ömer Akay - , Universität Bremen, Freie Universität (FU) Berlin (Autor:in)
  • Aleksandr Bashkatov - , Institut für Verfahrenstechnik und Umwelttechnik (IVU), Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Autor:in)
  • Emerson Coy - , Adam Mickiewicz University in Poznań (Autor:in)
  • Kerstin Eckert - , Professur für Transportprozesse an Grenzflächen (gB HZDR), Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Autor:in)
  • Kristian Etienne Einarsrud - , Norwegian University of Science and Technology (Autor:in)
  • Andreas Friedrich - , Deutsches Zentrum für Luft- und Raumfahrt (DLR) e.V. (Autor:in)
  • Benjamin Kimmel - , Deutsches Zentrum für Luft- und Raumfahrt (DLR) e.V. (Autor:in)
  • Stefan Loos - , Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung (Autor:in)
  • Gerd Mutschke - , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Autor:in)
  • Lars Röntzsch - , Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung, Brandenburgische Technische Universität Cottbus-Senftenberg (Autor:in)
  • Mark D. Symes - , University of Glasgow (Autor:in)
  • Xuegeng Yang - , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Autor:in)
  • Katharina Brinkert - , Universität Bremen, University of Warwick (Autor:in)

Abstract

Electrochemical energy conversion technologies play a crucial role in space missions, for example, in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS). They are also vitally important for future long-term space travel for oxygen, fuel and chemical production, where a re-supply of resources from Earth is not possible. Here, we provide an overview of currently existing electrolytic energy conversion technologies for space applications such as proton exchange membrane (PEM) and alkaline electrolyzer systems. We discuss the governing interfacial processes in these devices influenced by reduced gravitation and provide an outlook on future applications of electrolysis systems in, e.g., in-situ resource utilization (ISRU) technologies. A perspective of computational modelling to predict the impact of the reduced gravitational environment on governing electrochemical processes is also discussed and experimental suggestions to better understand efficiency-impacting processes such as gas bubble formation and detachment in reduced gravitational environments are outlined.

Details

OriginalspracheEnglisch
Aufsatznummer56
Fachzeitschriftnpj Microgravity
Jahrgang8
Ausgabenummer1
PublikationsstatusVeröffentlicht - 5 Dez. 2022
Peer-Review-StatusJa

Externe IDs

PubMed 36470890