Electrically conductive nanocomposites based on poly(lactic acid)/flexible copolyester blends with multiwalled carbon nanotubes

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Kedar Nath Dhakal - , Leibniz-Institut für Polymerforschung Dresden, Tribhuvan University, Nepal Polymer Institute (Autor:in)
  • Beate Krause - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Ralf Lach - , Polymer Service GmbH Merseburg (Autor:in)
  • Andre Wutzler - , Polymer Service GmbH Merseburg (Autor:in)
  • Wolfgang Grellmann - , Polymer Service GmbH Merseburg (Autor:in)
  • Hai Hong Le - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Amit Das - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Sven Wießner - , Professur für Elastomere Werkstoffe (gB IPF), Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Gert Heinrich - , Professur für Textiltechnik, Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Rameshwar Adhikari - , Tribhuvan University, Nepal Polymer Institute (Autor:in)

Abstract

Nanocomposites of poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) blends with multiwalled carbon nanotubes (MWCNTs) were prepared and their morphology, as well as electrical, mechanical, and thermal properties were investigated. The motivation of this work is to prepare electrically conductive and environmentally benign polymer nanocomposites using biodegradable PLA/PBAT blends. The composites were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning and transmission electron microscopy, tensile and microindentation tests, and thermogravimetric analyses (TGA). Volume resistivity and resistance to tensile deformation were measured for electrical characterization. The nanocomposites films were integrated into an electrical circuit to confirm their electrical conductivity. The FTIR spectra revealed the physical mixing between the polymer matrix and the filler. TEM micrographs suggested selective localization of MWCNTs in the PBAT phase with partial agglomeration forming a co-continuous morphology. TGA and derivative thermogravimetric curves suggested the overall decreasing thermal stability of composites than pure polymer blends regardless of the effects on individual blend components. A relatively low electrical percolation threshold (around 1 wt% of the fillers) compared to the literature works was achieved. Increasing electrical resistance of nanocomposites upon tensile deformation suggested their possibility of piezoresistive properties. Furthermore, the overall mechanical performance (i.e., elastic modulus, tensile strength, and hardness) of the materials was found to improve with increasing filler content.

Details

OriginalspracheEnglisch
Aufsatznummer51554
FachzeitschriftJournal of applied polymer science
Jahrgang139
Ausgabenummer4
PublikationsstatusVeröffentlicht - 20 Jan. 2022
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-0967-4557/work/173054850

Schlagworte

Schlagwörter

  • mechanical properties, microscopy, morphology, structure–property relationships, thermal properties