Elastic response of mesoporous silicon to capillary pressures in the pores

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Gennady Y. Gor - , US Naval Research Laboratory (NRL) (Autor:in)
  • Luca Bertinetti - , Max Planck Institute of Colloids and Interfaces (Autor:in)
  • Noam Bernstein - , US Naval Research Laboratory (NRL) (Autor:in)
  • Tommy Hofmann - , Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) (Autor:in)
  • Peter Fratzl - , Max Planck Institute of Colloids and Interfaces (Autor:in)
  • Patrick Huber - , Max Planck Institute of Colloids and Interfaces, Technische Universität Hamburg (Autor:in)

Abstract

We study water adsorption-induced deformation of a monolithic, mesoporous silicon membrane traversed by independent channels of ∼8 nm diameter. We focus on the elastic constant associated with the Laplace pressure-induced deformation of the membrane upon capillary condensation, i.e., the pore-load modulus. We perform finite-element method (FEM) simulations of the adsorption-induced deformation of hexagonal and square lattices of cylindrical pores representing the membrane. We find that the pore-load modulus weakly depends on the geometrical arrangement of pores, and can be expressed as a function of porosity. We propose an analytical model which relates the pore-load modulus to the porosity and to the elastic properties of bulk silicon (Young's modulus and Poisson's ratio), and provides an excellent agreement with FEM results. We find good agreement between our experimental data and the predictions of the analytical model, with the Young's modulus of the pore walls slightly lower than the bulk value. This model is applicable to a large class of materials with morphologies similar to mesoporous silicon. Moreover, our findings suggest that liquid condensation experiments allow one to elegantly access the elastic constants of a mesoporous medium.

Details

OriginalspracheEnglisch
Aufsatznummer261901
FachzeitschriftApplied physics letters
Jahrgang106
Ausgabenummer26
PublikationsstatusVeröffentlicht - 29 Juni 2015
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

ORCID /0000-0002-4666-9610/work/142238939

Schlagworte

ASJC Scopus Sachgebiete

Bibliotheksschlagworte