Efficiently accelerated bioimage analysis with NanoPyx, a Liquid Engine-powered Python framework

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Bruno M. Saraiva - , Instituto Gulbenkian de Ciência (Autor:in)
  • Inês Cunha - , Instituto Gulbenkian de Ciência, Universidade de Lisboa, Science for Life Laboratory (Autor:in)
  • António D. Brito - , Instituto Gulbenkian de Ciência, Universidade NOVA de Lisboa (Autor:in)
  • Gautier Follain - , Turun yliopiston (Autor:in)
  • Raquel Portela - , Universidade NOVA de Lisboa (Autor:in)
  • Robert Haase - , Exzellenzcluster PoL: Physik des Lebens (Autor:in)
  • Pedro M. Pereira - , Universidade NOVA de Lisboa (Autor:in)
  • Guillaume Jacquemet - , Turun yliopiston, Åbo Akademi University (Autor:in)
  • Ricardo Henriques - , Instituto Gulbenkian de Ciência, Universidade NOVA de Lisboa, University College London (Autor:in)

Abstract

The expanding scale and complexity of microscopy image datasets require accelerated analytical workflows. NanoPyx meets this need through an adaptive framework enhanced for high-speed analysis. At the core of NanoPyx, the Liquid Engine dynamically generates optimized central processing unit and graphics processing unit code variations, learning and predicting the fastest based on input data and hardware. This data-driven optimization achieves considerably faster processing, becoming broadly relevant to reactive microscopy and computing fields requiring efficiency.

Details

OriginalspracheEnglisch
Aufsatznummer12471
Seiten (von - bis)283-286
Seitenumfang4
FachzeitschriftNature methods
Jahrgang22
Ausgabenummer2
Frühes Online-Datum2 Jan. 2025
PublikationsstatusVeröffentlicht - Feb. 2025
Peer-Review-StatusJa

Schlagworte