Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Shubin Yang - , Max-Planck-Institut für Polymerforschung (Autor:in)
  • Linjie Zhi - , National Center for Nanoscience and Technology (Autor:in)
  • Kun Tang - , Max-Planck-Institut für Festkörperforschung (Autor:in)
  • Xinliang Feng - , Max-Planck-Institut für Polymerforschung, Shanghai Jiao Tong University (Autor:in)
  • Joachim Maier - , Max-Planck-Institut für Festkörperforschung (Autor:in)
  • Klaus Müllen - , Max-Planck-Institut für Polymerforschung (Autor:in)

Abstract

Heteroatom (N or S)-doped graphene with high surface area is successfully synthesized via thermal reaction between graphene oxide and guest gases (NH 3 or H 2S) on the basis of ultrathin graphene oxide-porous silica sheets at high temperatures. It is found that both N and S-doping can occur at annealing temperatures from 500 to 1000 °C to form the different binding configurations at the edges or on the planes of the graphene, such as pyridinic-N, pyrrolic-N, and graphitic-N for N-doped graphene, thiophene-like S, and oxidized S for S-doped graphene. Moreover, the resulting N and S-doped graphene sheets exhibit good electrocatalytic activity, long durability, and high selectivity when they are employed as metal-free catalysts for oxygen reduction reactions. This approach may provide an efficient platform for the synthesis of a series of heteroatom-doped graphenes for different applications. Heteroatom (N or S)-doped graphenes are synthesized via thermal reaction between graphene oxide and guest gases (NH 3 or H 2S) on ultrathin graphene oxide-porous silica sheets at high temperatures. It is found that both N and S-doping can occur to form the different binding configurations in the graphene and both N and S-doped graphene sheets exhibit excellent electrocatalytic properties for oxygen reduction reaction.

Details

OriginalspracheEnglisch
Seiten (von - bis)3634-3640
Seitenumfang7
FachzeitschriftAdvanced functional materials
Jahrgang22
Ausgabenummer17
PublikationsstatusVeröffentlicht - 11 Sept. 2012
Peer-Review-StatusJa
Extern publiziertJa

Schlagworte

Schlagwörter

  • doping, fuel cells, graphene, nanosheets, oxygen reduction reactions