Efficient integration of the variational equations of multi-dimensional Hamiltonian systems: Application to the Fermi-Pasta-Ulam lattice

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Enrico Gerlach - , Arbeitsgruppe Astronomie (Autor:in)
  • Siegfried Eggl - , Universität Wien (Autor:in)
  • Charalampos Skokos - , Center for Research and Applications of Nonlinear Systems, University of Patras (Autor:in)

Abstract

We study the problem of efficient integration of variational equations in multidimensional Hamiltonian systems. For this purpose, we consider a Runge-Kutta-type integrator, a Taylor series expansion method and the so-called "Tangent Map" (TM) technique based on symplectic integration schemes, and apply them to the Fermi-Pasta-Ulam beta (FPU-beta) lattice of N nonlinearly coupled oscillators, with N ranging from 4 to 20. The fast and accurate reproduction of well-known behaviors of the Generalized Alignment Index (GALI) chaos detection technique is used as an indicator for the efficiency of the tested integration schemes. Implementing the TM technique - which shows the best performance among the tested algorithms - and exploiting the advantages of the GALI method, we successfully trace the location of low-dimensional tori.

Details

OriginalspracheEnglisch
Aufsatznummer1250216
Seitenumfang13
FachzeitschriftInternational Journal of Bifurcation and Chaos in Applied Sciences and Engineering
Jahrgang22
Ausgabenummer9
PublikationsstatusVeröffentlicht - Sept. 2012
Peer-Review-StatusJa

Externe IDs

Scopus 85027936540
ORCID /0000-0002-9533-2168/work/168205386

Schlagworte

Schlagwörter

  • Hamiltonian systems, numerical integration, variational equations, Tangent Map method, GALI method, NUMERICAL-INTEGRATION, ORDER, EXPONENTS, DYNAMICS, CHAOS