Efficient feature-based motion estimation in neurosurgery using non-maximum suppression

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Abstract

In this contribution we propose a feature-based method for motion estimation and correction in intraoperative thermal imaging during brain surgery. The motion is estimated from co-registered white-light images in order to perform a robust motion correction on the thermographic data. To ensure real-time performance of an intraoperative application, we optimise the processing time which essentially depends on the number of key points found by our algorithm. For this purpose we evaluate the effect of applying an non-maximum suppression (NMS) to improve the feature detection efficiency. Furthermore we propose an adaptive method to determine the size of the suppression area, resulting in a trade-off between accuracy and processing time.

Details

OriginalspracheEnglisch
Seiten (von - bis)555-558
Seitenumfang4
FachzeitschriftCurrent Directions in Biomedical Engineering
Jahrgang4
Ausgabenummer1
PublikationsstatusVeröffentlicht - Sept. 2018
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-7436-0103/work/172566288
ORCID /0000-0001-9875-3534/work/172568316

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Brain motion, Harris corner detection, Nonmaximum suppression, Normalised cross correlation