Efficient data acquisition for traceability and analytics

Publikation: Beitrag in FachzeitschriftKonferenzartikelBeigetragenBegutachtung

Beitragende

  • Heiner Reinhardt - , Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (Autor:in)
  • Mahtab Mahdaviasl - , Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (Autor:in)
  • Bastian Prell - , Technische Hochschule Wildau (Autor:in)
  • Anton Mauersberger - , Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (Autor:in)
  • Philipp Klimant - , Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik, Hochschule Mittweida (Autor:in)
  • Jörg Reiff-Stephan - , Technische Hochschule Wildau (Autor:in)
  • Steffen Ihlenfeldt - , Professur für Werkzeugmaschinenentwicklung und adaptive Steuerungen, Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (Autor:in)

Abstract

Implementing processes for traceability is required in various industries to assure product quality during manufacturing, provide evidence on required processing conditions or facilitate product recalls. Commonly, radio-frequency identification (RFID) or code recognition techniques (e.g. Data Matrix) are applied to track the flow of workpieces through a manufacturing system and link processing data accordingly. Although the analysis of tracking data is well-examined, we still see a gap in the research on the trade-off between data acquisition, data analytics and data quality. Here, we present a framework to increase the value of existing data by enabling data analytics while addressing common pitfalls and reducing the costs of data management.

Details

OriginalspracheEnglisch
Seiten (von - bis)73-78
Seitenumfang6
FachzeitschriftProcedia CIRP
Jahrgang122
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa

Konferenz

Titel31st CIRP Conference on Life Cycle Engineering
KurztitelLCE 2024
Veranstaltungsnummer31
Dauer19 - 21 Juni 2024
Webseite
OrtPolitecnico di Torino
StadtTurin
LandItalien

Schlagworte

Schlagwörter

  • Analysis, Complexity, Decision making, Design, Identification, Knowledge management, Manufacturing system, Process control, Quality assurance, Sustainable development