Efficient data acquisition for traceability and analytics
Publikation: Beitrag in Fachzeitschrift › Konferenzartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Implementing processes for traceability is required in various industries to assure product quality during manufacturing, provide evidence on required processing conditions or facilitate product recalls. Commonly, radio-frequency identification (RFID) or code recognition techniques (e.g. Data Matrix) are applied to track the flow of workpieces through a manufacturing system and link processing data accordingly. Although the analysis of tracking data is well-examined, we still see a gap in the research on the trade-off between data acquisition, data analytics and data quality. Here, we present a framework to increase the value of existing data by enabling data analytics while addressing common pitfalls and reducing the costs of data management.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 73-78 |
Seitenumfang | 6 |
Fachzeitschrift | Procedia CIRP |
Jahrgang | 122 |
Publikationsstatus | Veröffentlicht - 2024 |
Peer-Review-Status | Ja |
Konferenz
Titel | 31st CIRP Conference on Life Cycle Engineering |
---|---|
Kurztitel | LCE 2024 |
Veranstaltungsnummer | 31 |
Dauer | 19 - 21 Juni 2024 |
Webseite | |
Ort | Politecnico di Torino |
Stadt | Turin |
Land | Italien |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Analysis, Complexity, Decision making, Design, Identification, Knowledge management, Manufacturing system, Process control, Quality assurance, Sustainable development