Effects of Mg compounds in hydroxylated calcined dolomite as an effective and sustainable substitute of lime to precipitate as ettringite for treatment of selenite/selenate in aqueous solution

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Binglin Guo - , Kyushu University (Autor:in)
  • Quanzhi Tian - , Kyushu University, China University of Mining and Technology (Autor:in)
  • Tsubasa Oji - , Kyushu University (Autor:in)
  • Lei Wang - , Institut für Baustoffe (Autor:in)
  • Keiko Sasaki - , Kyushu University (Autor:in)

Abstract

The elevated level of selenium (Se) in the aqueous system presents long-term ecological risks. Hydroxylated calcined dolomites (HCDs) are considered as potentially sustainable lime sources due to their lower production temperatures and resourceful than lime. In this study, HCDs were developed for the removal of Se contaminated water. The HCDs exhibited a better performance to co-precipitate with Se oxyanions than pure Ca(OH)2. Considering that HCDs consisted of Ca(OH)2 with MgO and Mg(OH)2, the function of Mg compounds was also elaborated by various characterization techniques. Mg compounds were proved to enhance the precipitation process and Se removal. STEM-EDX observation revealed that SeO32– was incorporated into the ettringite structure with Mg compounds, whereas SeO42– exhibited a affinity to Mg compounds. Extended X-ray absorption fine structure (EXAFS) results for the MgO/Mg(OH)2 after the reaction proved that both SeO32– interacted with Mg(OH)2 and MgO via inner-sphere complexes whereas SeO42– formed outer-sphere complexes with these Mg compounds. Besides, Mg compounds also influenced the surface charge of solid residues and thus enhanced SeO32– removal. This study provides a fundamental understanding of the roles of Mg compounds in the removal of Se oxyanions during environmental remediation. Besides, the HCDs were proved to be sustainable Ca sources for waste/wastewater remediation.

Details

OriginalspracheEnglisch
Aufsatznummer125782
FachzeitschriftColloids and Surfaces A: Physicochemical and Engineering Aspects
Jahrgang610
PublikationsstatusVeröffentlicht - 5 Feb. 2021
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • Calcined dolomite, EXAFS, Green and sustainable additives, Mg additives, Se oxyanions, Surface complexation