Effects of gravity modulation on the dynamics of a radial A+B→C reaction front

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Yorgos Stergiou - , Helmholtz-Zentrum Dresden-Rossendorf, Technische Universität Dresden (Autor:in)
  • Marcus J.B. Hauser - , Otto-von-Guericke-Universität Magdeburg (Autor:in)
  • Alessandro Comolli - , Université libre de Bruxelles (ULB) (Autor:in)
  • Fabian Brau - , Université libre de Bruxelles (ULB) (Autor:in)
  • Anne De Wit - , Université libre de Bruxelles (ULB) (Autor:in)
  • Gábor Schuszter - , University of Szeged (Autor:in)
  • Paszkál Papp - , University of Szeged (Autor:in)
  • Dezső Horváth - , University of Szeged (Autor:in)
  • Clément Roux - , Université de Toulouse (Autor:in)
  • Véronique Pimienta - , Université de Toulouse (Autor:in)
  • Kerstin Eckert - , Professur für Transportprozesse an Grenzflächen (g.B. HZDR), Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Karin Schwarzenberger - , Professur für Transportprozesse an Grenzflächen (g.B. HZDR), Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)

Abstract

The dynamics of radial A+B→C reaction fronts can be affected by buoyancy-driven convection. Motivated by recent advances in reaction-diffusion–advection (RDA) systems theory, we investigated experimentally a radial A+B→C RDA system under modulated gravity, using a Hele-Shaw cell setup onboard a parabolic flight. We evaluated characteristic properties of the RDA models, such as the temporal evolution of the total amount of product C, the width and position of the reaction front and compared them with theoretical predictions. During increased gravity, we observed an increase in both the total amount of product C formed and the front width, compared to the corresponding normal-gravity experiments, caused by the stronger buoyancy-driven convection. Finally, we report on experiments performed entirely in absence of gravity, eliminating buoyancy-driven convection. Despite the short observation time, comparison with ground experiments showed the effect of buoyant convection on radial RDA fronts, enhancing mixing and increasing product generation.

Details

OriginalspracheEnglisch
Aufsatznummer117703
FachzeitschriftChemical engineering science
Jahrgang257
PublikationsstatusVeröffentlicht - 10 Aug. 2022
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • Convection, Microgravity, Parabolic flight, Radial Hele-Shaw, Reaction front, Reaction–diffusion–advection