Effect of Powder ALD Interface Modification on the Thermoelectric Performance of Bismuth

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Shiyang He - , Professur für Metallische Werkstoffe und Metallphysik (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Amin Bahrami - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Xiang Zhang - , Zhengzhou University (Autor:in)
  • Ignacio González Martínez - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Sebastian Lehmann - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Kornelius Nielsch - , Professur für Metallische Werkstoffe und Metallphysik (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)

Abstract

In thermoelectric materials, phase boundaries are crucial for carrier/phonon transport. Manipulation of carrier and phonon scatterings by introducing continuous interface modification has been shown to improve thermoelectric performance. In this paper, a strategy of interface modification based on powder atomic layer deposition (PALD) is introduced to accurately control and modify the phase boundary of pure bismuth. Ultrathin layers of Al2O3, TiO2, and ZnO are deposited on Bi powder by typically 1–20 cycles. All of the oxide layers significantly alter the microstructure and suppressed grain growth. These hierarchical interface modifications aid in the formation of an energy barrier by the oxide layer, resulting in a substantial increase in the Seebeck coefficient that is superior to that of most pure polycrystalline metals. Conversely, taking advantage of the strong electron and phonon scattering, an exceptionally large decrease in thermal conductivity is obtained. A maximum figure of merit, zT, of 0.15 at 393 K and an average zT of 0.14 at 300–453 K were achieved in 5 cycles of Al2O3-coated Bi. The ALD-based approach, as a practical interfacial modification technique, can be easily applied to other thermoelectric materials, which can contribute to the development of high-performance thermoelectric materials of great significance.

Details

OriginalspracheEnglisch
Aufsatznummer2100953
FachzeitschriftAdvanced materials technologies
Jahrgang7
Ausgabenummer5
PublikationsstatusVeröffentlicht - Mai 2022
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • Bismuth, carrier/phonon scattering, oxide layers deposition, powder atomic layer deposition, thermoelectric