Dynamics of EEG-signals in epilepsy: Spatio temporal analysis by Cellular Nonlinear Networks

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Christian Niederhöfer - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • Frank Gollas - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • Ronald Tetzlaff - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)

Abstract

Meanwhile, numerous publications address the feature extraction problem in epilepsy. Up to now a precursor detection based on changes of EEG-signal features could not be performed with a sufficient sensitivity and specifity for an automated seizure warning system. Different approaches including procedures using stochastic models, as well as algorithms based on Cellular Nonlinear Networks (CNN) and Volterra-Systems have been discussed throughout previous publications. Therin interesting findings have been discussed involving e.g. signal prediction algorithms and the calculation of synchronisation measures. In this contribution new results obtained in a spatio temporal linear prediction of segmented electrode signals using long-term SEEG and ECoG recordings of patients in epilepsy will be discussed in detail.

Details

OriginalspracheEnglisch
TitelEuropean Conference on Circuit Theory and Design 2007, ECCTD 2007
Herausgeber (Verlag)IEEE Computer Society
Seiten296-299
Seitenumfang4
ISBN (Print)1424413427, 9781424413423
PublikationsstatusVeröffentlicht - 2007
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheEuropean Conference on Circuit Theory and Design 2007, ECCTD 2007

Konferenz

TitelEuropean Conference on Circuit Theory and Design 2007, ECCTD 2007
Dauer26 - 30 August 2007
StadtSeville
LandSpanien

Externe IDs

ORCID /0000-0001-7436-0103/work/172566300