Doubly degenerate diffuse interface models of surface diffusion

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Marco Salvalaglio - , Technische Universität Dresden (Autor:in)
  • Axel Voigt - , Technische Universität Dresden (Autor:in)
  • Steven M. Wise - , University of Tennessee, Knoxville (Autor:in)

Abstract

We discuss two doubly degenerate Cahn-Hilliard (DDCH) models for isotropic surface diffusion. Degeneracy is introduced in both the mobility function and a restriction function associated to the chemical potential. Our computational results suggest that the restriction functions yield more accurate approximations of surface diffusion. We consider a slight generalization of a model that has appeared before, which is non-variational, meaning there is no clear energy that is dissipated along the solution trajectories. We also introduce a new variational and, more precisely, energy dissipative model, which can be related to the generalized non-variational model. For both models, we use formal matched asymptotics to show the convergence to the sharp-interface limit of surface diffusion.

Details

OriginalspracheEnglisch
Seiten (von - bis)5385-5405
Seitenumfang21
FachzeitschriftMathematical Methods in the Applied Sciences
Jahrgang44
Ausgabenummer7
PublikationsstatusVeröffentlicht - 15 Mai 2021
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

ORCID /0000-0002-4217-0951/work/142237385
unpaywall 10.1002/mma.7116

Schlagworte

Schlagwörter

  • degenerate Cahn&#8211, Hilliard equation, surface diffusion, CAHN-HILLIARD EQUATION, PHASE-FIELD MODEL, FINITE-ELEMENT-METHOD, DISCRETE SCHEME, EVOLUTION, FILMS