Dopamine from the Brain Promotes Spinal Motor Neuron Generation during Development and Adult Regeneration

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Michell M. Reimer - , University of Edinburgh (Autor:in)
  • Anneliese Norris - , University of Edinburgh (Autor:in)
  • Jochen Ohnmacht - , University of Edinburgh (Autor:in)
  • Rickie Patani - , University of Cambridge (Autor:in)
  • Zhen Zhong - , University of Edinburgh (Autor:in)
  • Tatyana B. Dias - , University of Edinburgh (Autor:in)
  • Veronika Kuscha - , University of Edinburgh (Autor:in)
  • Angela L. Scott - , University of Edinburgh (Autor:in)
  • Yu Chia Chen - , University of Helsinki (Autor:in)
  • Stanislav Rozov - , University of Helsinki (Autor:in)
  • Sarah L. Frazer - , University of Edinburgh (Autor:in)
  • Cameron Wyatt - , University of Edinburgh (Autor:in)
  • Shin ichi Higashijima - , National Institutes of Natural Sciences - Okazaki Institute for Integrative Bioscience (Autor:in)
  • E. Elizabeth Patton - , University of Edinburgh (Autor:in)
  • Pertti Panula - , University of Helsinki (Autor:in)
  • Siddharthan Chandran - , University of Edinburgh (Autor:in)
  • Thomas Becker - , University of Edinburgh (Autor:in)
  • Catherina G. Becker - , University of Edinburgh (Autor:in)

Abstract

Coordinated development of brain stem and spinal target neurons is pivotal for the emergence of a precisely functioning locomotor system. Signals that match the development of these far-apart regions of the central nervous system may be redeployed during spinal cord regeneration. Here we show that descending dopaminergic projections from the brain promote motor neuron generation at the expense of V2 interneurons in the developing zebrafish spinal cord by activating the D4a receptor, which acts on the hedgehog pathway. Inhibiting this essential signal during early neurogenesis leads to a long-lasting reduction of motor neuron numbers and impaired motor responses of free-swimming larvae. Importantly, during successful spinal cord regeneration in adult zebrafish, endogenous dopamine promotes generation of spinal motor neurons, and dopamine agonists augment this process. Hence, we describe a supraspinal control mechanism for the development and regeneration of specific spinal cell types that uses dopamine as a signal.

Details

OriginalspracheEnglisch
Seiten (von - bis)478-491
Seitenumfang14
FachzeitschriftDevelopmental cell
Jahrgang25
Ausgabenummer5
PublikationsstatusVeröffentlicht - 10 Juni 2013
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 23707737