Does Pinocchio get Cybersickness? The Mitigating Effect of a Virtual Nose on Cybersickness
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Virtual reality (VR) has many applications. However, not all users can enjoy them equally due to cybersickness, a form of visually induced motion sickness in VR. To increase the accessibility of VR, countermeasures against cybersickness are needed. The requirements for a good countermeasure are a reasonable effect size, especially since susceptibility varies between individuals, while reducing immersion as little as possible. One idea that seems to meet these requirements, the virtual nose, has been tested with small samples – from which large effect sizes can be derived – and allows universal applicability. The mode of action of the virtual nose derives from the rest frame hypothesis: Certain objects that are perceived as stationary serve as a rest frame, facilitating the self-calibration of the body. In addition, the rest frame may not only act as a postural corrector, which should be observable by a reduction of postural sway, but also as a fixation cross, which should be observable by longer and more frequent fixations. This study tested whether a virtual nose (treatment group) significantly reduced cybersickness compared to a group without a virtual nose (control group) and whether physiological process indicators, namely head and eye tracking, differed between the groups with a larger sample size than previous studies. Participants were matched into the treatment and control group according to their gender and previous VR experience, as these aspects are discussed to influence cybersickness susceptibility. Experience groups were divided into three: none, less than 30 min of VR experience, and more than 30 min. A total of 124 participants were recruited, of which 110 were eligible for the analyses (multivariate repeated measures analysis and Holm-corrected univariate post-hoc tests). During the VR exposure, the participants’ task was to explore a virtual city and collect checkpoints. The questionnaires used were the Virtual Reality Sickness Questionnaire (VRSQ) for a pre-post-comparison and the Misery Scale (MISC) applied every 2 min during the VR exposure. The continuously sampled process indicators were cut into these fixed 2-minute intervals for the analyses. The results show no mitigating effect of the treatment. Nevertheless, the reported cybersickness was significantly lower in the more experienced group and significantly higher in the inexperienced group compared to the low-experienced group. The process indicators head and eye tracking mostly confirm the mitigating effect of previous VR experience on cybersickness susceptibility but do not differ between the treatment and control group. It can be argued that the artificiality of a virtual nose that is added to a scene nullifies the mitigating effect by reducing immersion. It may also be that the stimulus needs to be more salient to be effective. In summary, prior experience with VR was the mitigating factor. As the process indicators and the controller input differ, one explanation could be a behavioral adaptation with increasing VR experience. Alternative explanations, such as a gender- or experience-specific pre-selection effect for VR studies, are discussed.
Details
Originalsprache | Englisch |
---|---|
Titel | Augmented, Virtual and Mixed Reality Simulation |
Redakteure/-innen | Tareq Ahram, Waldemar Karwowski |
Publikationsstatus | Veröffentlicht - 2023 |
Peer-Review-Status | Ja |
Externe IDs
unpaywall | 10.54941/ahfe1004445 |
---|