DMME: Data mining methodology for engineering applications - A holistic extension to the CRISP-DM model
Publikation: Beitrag in Fachzeitschrift › Konferenzartikel › Beigetragen › Begutachtung
Beitragende
Abstract
The value of data analytics is fundamental in cyber-physical production systems for tasks like optimization and predictive maintenance. The de facto standard for conducting data analytics in industrial applications is the CRISP-DM methodology. However, CRISP-DM does not specify a data acquisition phase within production scenarios. With this work, we present DMME as an extension to the CRISP-DM methodology specifically tailored for engineering applications. It provides a communication and planning foundation for data analytics within the production domain. We show the feasibility of our methodology for engineering applications within a case study in the field of work piece detection.
Details
| Originalsprache | Englisch |
|---|---|
| Seiten (von - bis) | 403-408 |
| Seitenumfang | 6 |
| Fachzeitschrift | Procedia CIRP |
| Jahrgang | 79 |
| Publikationsstatus | Veröffentlicht - 2019 |
| Peer-Review-Status | Ja |
Konferenz
| Titel | 12th CIRP Conference on Intelligent Computation in Manufacturing Engineering |
|---|---|
| Untertitel | Innovative and Cognitive Production Technology and Systems |
| Kurztitel | CIRP ICME 2018 |
| Veranstaltungsnummer | 12 |
| Dauer | 18 - 20 Juli 2018 |
| Webseite | |
| Bekanntheitsgrad | Internationale Veranstaltung |
| Ort | Hotel Continental Terme |
| Stadt | Naples |
| Land | Italien |
Externe IDs
| ORCID | /0000-0001-7540-4235/work/161408745 |
|---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Data driven process optimisation, Data mining, Machine learning, Manufacturing data management