DMME: Data mining methodology for engineering applications - A holistic extension to the CRISP-DM model

Publikation: Beitrag in FachzeitschriftKonferenzartikelBeigetragenBegutachtung

Abstract

The value of data analytics is fundamental in cyber-physical production systems for tasks like optimization and predictive maintenance. The de facto standard for conducting data analytics in industrial applications is the CRISP-DM methodology. However, CRISP-DM does not specify a data acquisition phase within production scenarios. With this work, we present DMME as an extension to the CRISP-DM methodology specifically tailored for engineering applications. It provides a communication and planning foundation for data analytics within the production domain. We show the feasibility of our methodology for engineering applications within a case study in the field of work piece detection.

Details

OriginalspracheEnglisch
Seiten (von - bis)403-408
Seitenumfang6
FachzeitschriftProcedia CIRP
Jahrgang79
PublikationsstatusVeröffentlicht - 2019
Peer-Review-StatusJa

Konferenz

Titel12th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME 2018
Dauer18 - 20 Juli 2018
StadtNaples
LandItalien

Externe IDs

ORCID /0000-0001-7540-4235/work/161408745

Schlagworte

Schlagwörter

  • Data driven process optimisation, Data mining, Machine learning, Manufacturing data management