Distributional properties of solutions of $dV_t = V_{t-}dU_t + dL_t$ with Lévy noise

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Anita Behme - , Technische Universität Braunschweig (Autor:in)

Abstract

For a given bivariate Levy process (Ut,Lt )t>0, distributional properties of the stationary solutions of the stochastic differential equation dVt = Vt-dUt + dL t are analysed. In particular, the expectation and autocorrelation function are obtained in terms of the process (U,L) and in several cases of interest the tail behavior is described. In the case where U has jumps of size -1, necessary and sufficient conditions for the law of the solutions to be (absolutely) continuous are given.

Details

OriginalspracheEnglisch
Seiten (von - bis)688-711
FachzeitschriftAdvances in Applied Probability
Jahrgang43
Ausgabenummer3
PublikationsstatusVeröffentlicht - 2011
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

Scopus 80053430747

Schlagworte

Bibliotheksschlagworte