Distributional hyperspace-convergence of Argmin-sets in convex -estimation
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
In M-estimation we consider the sets of all minimizing points of convex empirical criterion functions. These sets are random closed sets. We derive distributional convergence in the hyperspace of all closed subsets of the real line endowed with the Fell-topology. As a special case single minimizing points converge in distribution in the classical sense. In contrast to the literature so far, unusual rates of convergence and non-normal limits emerge, which go far beyond the square-root asymptotic normality. Moreover, our theory can be applied to the sets of zero-estimators.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 3-35 |
Seitenumfang | 33 |
Fachzeitschrift | Theory of probability and mathematical statistics |
Jahrgang | 109 |
Frühes Online-Datum | Okt. 2023 |
Publikationsstatus | Veröffentlicht - 2023 |
Peer-Review-Status | Ja |
Externe IDs
WOS | 001084577300001 |
---|---|
Scopus | 85163988294 |
Mendeley | f2c6d3e9-6acc-3ecd-8e26-25106e194bc5 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Argmin-sets, Fell-topology, M-estimation, Convex empirical processes, Random closed sets