Distributed Sparse Block Grids on GPUs
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
We present a design and implementation of distributed sparse block grids that transparently scale from a single CPU to multi-GPU clusters. We support dynamic sparse grids as, e.g., occur in computer graphics with complex deforming geometries and in multi-resolution numerical simulations. We present the data structures and algorithms of our approach, focusing on the optimizations required to render them computationally efficient on CPUs and GPUs alike. We provide a scalable implementation in the OpenFPM software library for HPC. We benchmark our implementation on up to 16 Nvidia GTX 1080 GPUs and up to 64 Nvidia A100 GPUs showing state-of-the-art scalability (68% to 96% parallel efficiency) on three benchmark problems. On a single GPU, our implementation is 14 to 140-fold faster than on a multi-core CPU.
Details
Originalsprache | Englisch |
---|---|
Titel | High Performance Computing |
Redakteure/-innen | Bradford L. Chamberlain, Ana-Lucia Varbanescu, Hatem Ltaief, Piotr Luszczek |
Herausgeber (Verlag) | Springer, Berlin [u. a.] |
Seiten | 272-290 |
Seitenumfang | 19 |
ISBN (Print) | 9783030787127 |
Publikationsstatus | Veröffentlicht - 2021 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | Lecture Notes in Computer Science, Volume 12728 |
---|---|
ISSN | 0302-9743 |
Konferenz
Titel | 36th International Conference on High Performance Computing, ISC High Performance 2021 |
---|---|
Dauer | 24 Juni - 2 Juli 2021 |
Stadt | Virtual, Online |
Externe IDs
ORCID | /0000-0003-4414-4340/work/142252156 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Block grid, CUDA, Distributed data, GPU, Sparse grid