Distinct contributions of tensile and shear stress on E-cadherin levels during morphogenesis

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Girish R. Kale - , Centre national de la recherche scientifique (CNRS), Tata Institute of Fundamental Research (Autor:in)
  • Xingbo Yang - , Northwestern University, Harvard University (Autor:in)
  • Jean Marc Philippe - , Centre national de la recherche scientifique (CNRS) (Autor:in)
  • Madhav Mani - , Northwestern University (Autor:in)
  • Pierre François Lenne - , Centre national de la recherche scientifique (CNRS) (Autor:in)
  • Thomas Lecuit - , Centre national de la recherche scientifique (CNRS), College de France (Autor:in)

Abstract

During epithelial morphogenesis, cell contacts (junctions) are constantly remodeled by mechanical forces that work against adhesive forces. E-cadherin complexes play a pivotal role in this process by providing persistent cell adhesion and by transmitting mechanical tension. In this context, it is unclear how mechanical forces affect E-cadherin adhesion and junction dynamics. During Drosophila embryo axis elongation, Myosin-II activity in the apico-medial and junctional cortex generates mechanical forces to drive junction remodeling. Here we report that the ratio between Vinculin and E-cadherin intensities acts as a ratiometric readout for these mechanical forces (load) at E-cadherin complexes. Medial Myosin-II loads E-cadherin complexes on all junctions, exerts tensile forces, and increases levels of E-cadherin. Junctional Myosin-II, on the other hand, biases the distribution of load between junctions of the same cell, exerts shear forces, and decreases the levels of E-cadherin. This work suggests distinct effects of tensile versus shear stresses on E-cadherin adhesion.

Details

OriginalspracheEnglisch
Aufsatznummer5021
FachzeitschriftNature communications
Jahrgang9
Ausgabenummer1
PublikationsstatusVeröffentlicht - 1 Dez. 2018
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 30479400