DISTANCE MULTIVARIANCE - NEW DEPENDENCE MEASURES FOR RANDOM VECTORS
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We introduce two new measures for the dependence of n >= 2 random variables: distance multivariance and total distance multivariance. Both measures are based on the weighted L-2-distance of quantities related to the characteristic functions of the underlying random variables. These extend distance covariance (introduced by Szekely, Rizzo and Bakirov) from pairs of random variables to n-tuplets of random variables. We show that total distance multivariance can be used to detect the independence of n random variables and has a simple finite-sample representation in terms of distance matrices of the sample points, where distance is measured by a continuous negative definite function. Under some mild moment conditions, this leads to a test for independence of multiple random vectors which is consistent against all alternatives.
Details
| Originalsprache | Englisch |
|---|---|
| Seiten (von - bis) | 2757-2789 |
| Seitenumfang | 33 |
| Fachzeitschrift | Annals of statistics |
| Jahrgang | 47 |
| Ausgabenummer | 5 |
| Publikationsstatus | Veröffentlicht - Okt. 2019 |
| Peer-Review-Status | Ja |
Externe IDs
| Scopus | 85072197623 |
|---|---|
| ORCID | /0000-0003-0913-3363/work/166762745 |
Schlagworte
Schlagwörter
- Dependence measure, stochastic independence, negative definite function, characteristic function, Gaussian random field, statistical test of independence, INDEPENDENCE, COVARIANCE