DISTANCE MULTIVARIANCE - NEW DEPENDENCE MEASURES FOR RANDOM VECTORS
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We introduce two new measures for the dependence of n >= 2 random variables: distance multivariance and total distance multivariance. Both measures are based on the weighted L-2-distance of quantities related to the characteristic functions of the underlying random variables. These extend distance covariance (introduced by Szekely, Rizzo and Bakirov) from pairs of random variables to n-tuplets of random variables. We show that total distance multivariance can be used to detect the independence of n random variables and has a simple finite-sample representation in terms of distance matrices of the sample points, where distance is measured by a continuous negative definite function. Under some mild moment conditions, this leads to a test for independence of multiple random vectors which is consistent against all alternatives.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 2757-2789 |
Seitenumfang | 33 |
Fachzeitschrift | Annals of statistics |
Jahrgang | 47 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - Okt. 2019 |
Peer-Review-Status | Ja |
Externe IDs
Scopus | 85072197623 |
---|---|
ORCID | /0000-0003-0913-3363/work/166762745 |
Schlagworte
Schlagwörter
- Dependence measure, stochastic independence, negative definite function, characteristic function, Gaussian random field, statistical test of independence, INDEPENDENCE, COVARIANCE