Distance constraint satisfaction problems

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We study the complexity of constraint satisfaction problems for templates Γ over the integers where the relations are first-order definable from the successor function. In the case that Γ is locally finite (i.e., the Gaifman graph of Γ has finite degree), we show that Γ is homomorphically equivalent to a structure with one of two classes of polymorphisms (which we call modular max and modular min) and the CSP for Γ can be solved in polynomial time, or Γ is homomorphically equivalent to a finite transitive structure, or the CSP for Γ is NP-complete. Assuming a widely believed conjecture from finite domain constraint satisfaction (we require the tractability conjecture by Bulatov, Jeavons and Krokhin in the special case of transitive finite templates), this proves that those CSPs have a complexity dichotomy, that is, are either in P or NP-complete.

Details

OriginalspracheDeutsch
Seiten (von - bis)87-105
Seitenumfang19
FachzeitschriftInformation and computation
Jahrgang247
PublikationsstatusVeröffentlicht - 1 Apr. 2016
Peer-Review-StatusJa

Externe IDs

Scopus 84954288234
ORCID /0000-0001-8228-3611/work/142241120

Schlagworte

Schlagwörter

  • Complexity dichotomy, Constraint satisfaction problems, Endomorphisms, Integers with successor, Primitive positive definability, Reducts