Dissipation losses limiting first-order phase transition materials in cryogenic caloric cooling: A case study on all-d-metal Ni(-Co)-Mn-Ti Heusler alloys

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Benedikt Beckmann - , Technische Universität Darmstadt (Autor:in)
  • David Koch - , Technische Universität Darmstadt (Autor:in)
  • Lukas Pfeuffer - , Technische Universität Darmstadt (Autor:in)
  • Tino Gottschall - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Andreas Taubel - , Technische Universität Darmstadt (Autor:in)
  • Esmaeil Adabifiroozjaei - , Technische Universität Darmstadt (Autor:in)
  • Olga N. Miroshkina - , Universität Duisburg-Essen (Autor:in)
  • Stefan Riegg - , Technische Universität Darmstadt (Autor:in)
  • Timo Niehoff - , Helmholtz-Zentrum Dresden-Rossendorf, Technische Universität Dresden (Autor:in)
  • Nagaarjhuna A. Kani - , Technische Universität Darmstadt (Autor:in)
  • Markus E. Gruner - , Universität Duisburg-Essen (Autor:in)
  • Leopoldo Molina-Luna - , Technische Universität Darmstadt (Autor:in)
  • Konstantin P. Skokov - , Technische Universität Darmstadt (Autor:in)
  • Oliver Gutfleisch - , Technische Universität Darmstadt (Autor:in)

Abstract

Ni-Mn-based Heusler alloys, in particular all-d-metal Ni(-Co)-Mn-Ti, are highly promising materials for energy-efficient solid-state refrigeration as large multicaloric effects can be achieved across their magnetostructural martensitic transformation. However, no comprehensive study on the crucially important transition entropy change Δst exists so far for Ni(-Co)-Mn-Ti. Here, we present a systematic study analyzing the composition and temperature dependence of Δst. Our results reveal a substantial structural entropy change contribution of approximately 65 J(kgK)-1, which is compensated at lower temperatures by an increasingly negative entropy change associated with the magnetic subsystem. This leads to compensation temperatures Tcomp of 75 K and 300 K in Ni35Co15Mn50-yTiy and Ni33Co17Mn50-yTiy, respectively, below which the martensitic transformations are arrested. In addition, we simultaneously measured the responses of the magnetic, structural and electronic subsystems to the temperature- and field-induced martensitic transformation near Tcomp, showing an abnormal increase of hysteresis and consequently dissipation energy at cryogenic temperatures. Simultaneous measurements of magnetization and adiabatic temperature change ΔTad in pulsed magnetic fields reveal a change in sign of ΔTad and a substantial positive and irreversible ΔTad up to 15 K at 15 K as a consequence of increased dissipation losses and decreased heat capacity. Most importantly, this phenomenon is universal, it applies to any first-order material with non-negligible hysteresis and any stimulus, effectively limiting the utilization of their caloric effects for gas liquefaction at cryogenic temperatures.

Details

OriginalspracheEnglisch
Aufsatznummer118695
FachzeitschriftActa materialia
Jahrgang246
PublikationsstatusVeröffentlicht - 1 März 2023
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • Heusler alloys, Hydrogen, Magnetostructural transformation, Martensitic transformation, Solid-state caloric cooling