Discrete temporal constraint satisfaction problems

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

A discrete temporal constraint satisfaction problem is a constraint satisfaction problem (CSP) over the set of integers whose constraint language consists of relations that are first-order definable over the order of the integers. We prove that every discrete temporal CSP is in P or NP-complete, unless it can be formulated as a finite domain CSP, in which case the computational complexity is not known in general.

Details

OriginalspracheEnglisch
Aufsatznummer9
FachzeitschriftJournal of the ACM
Jahrgang65
Ausgabenummer2
PublikationsstatusVeröffentlicht - Feb. 2018
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-8228-3611/work/142241105

Schlagworte

Schlagwörter

  • Discrete linear orders, Endomorphisms, Integers, Polymorphisms, Presburger arithmetic, Successor relation