Discrete region competition for unknown numbers of connected regions

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Janick Cardinale - , ETH Zurich, Swiss Institute of Bioinformatics (Autor:in)
  • Gregory Paul - , ETH Zurich, Swiss Institute of Bioinformatics (Autor:in)
  • Ivo F. Sbalzarini - , ETH Zurich, Swiss Institute of Bioinformatics (Autor:in)

Abstract

We present a discrete unsupervised multiregion-competition algorithm for image segmentation over different energy functionals. The number of regions present in an image does not need to be known a priori, nor their photometric properties. The algorithm jointly estimates the number of regions, their photometries, and their contours. The required regularization is provided by defining a region as a connected set of pixels. The evolving contours in the image are represented by computational particles that move as driven by an energy-minimization algorithm. We present an efficient discrete algorithm that allows minimizing a range of well-known energy functionals under the topological constraint of regions being connected components. The presented framework and algorithms are implemented in the open-source Insight Toolkit image-processing library.

Details

OriginalspracheEnglisch
Aufsatznummer6175954
Seiten (von - bis)3531-3545
Seitenumfang15
FachzeitschriftIEEE transactions on image processing
Jahrgang21
Ausgabenummer8
PublikationsstatusVeröffentlicht - 2012
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 22481820
ORCID /0000-0003-4414-4340/work/159608296

Schlagworte

Schlagwörter

  • Connected component, Deconvolution, Digital topology, Discrete level set, Energy-based segmentation, Multiregion segmentation, Region competition, Topological constraint