Dimensional crossover and cold-atom realization of topological Mott insulators

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Mathias S. Scheurer - , Karlsruhe Institute of Technology (Autor:in)
  • Stephan Rachel - , Professur für Theoretische Festkörperphysik, Technische Universität Dresden (Autor:in)
  • Peter P. Orth - , Karlsruhe Institute of Technology (Autor:in)

Abstract

Interacting cold-atomic gases in optical lattices offer an experimental approach to outstanding problems of many body physics. One important example is the interplay of interaction and topology which promises to generate a variety of exotic phases such as the fractionalized Chern insulator or the topological Mott insulator. Both theoretically understanding these states of matter and finding suitable systems that host them have proven to be challenging problems. Here we propose a cold-atom setup where Hubbard on-site interactions give rise to spin liquid-like phases: weak and strong topological Mott insulators. They represent the celebrated paradigm of an interacting and topological quantum state with fractionalized spinon excitations that inherit the topology of the non-interacting system. Our proposal shall help to pave the way for a controlled experimental investigation of this exotic state of matter in optical lattices. Furthermore, it allows for the investigation of a dimensional crossover from a two-dimensional quantum spin Hall insulating phase to a three-dimensional strong topological insulator by tuning the hopping between the layers.

Details

OriginalspracheEnglisch
Aufsatznummer8386
FachzeitschriftScientific reports
Jahrgang5
PublikationsstatusVeröffentlicht - 11 Feb. 2015
Peer-Review-StatusJa

Schlagworte

ASJC Scopus Sachgebiete