Differential lateral and basal tension drive folding of Drosophila wing discs through two distinct mechanisms

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Liyuan Sui - , Professur für Systembiologie und Genetik (Erstautor:in)
  • Silvanus Alt - , Max-Planck-Institute for the Physics of Complex Systems, The Francis Crick Institute, Max-Delbrück-Centrum für Molekulare Medizin (MDC) (Autor:in)
  • Martin Weigert - , Zentrum für Systembiologie Dresden (CSBD), Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Natalie Dye - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Suzanne Eaton - , Professur für Entwicklungszellbiologie (gB MPI-CBG), Biotechnologisches Zentrum (BIOTEC) (Autor:in)
  • Florian Jug - , Zentrum für Systembiologie Dresden (CSBD), Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Eugene W. Meyers - , Zentrum für Systembiologie Dresden (CSBD), Max Planck Institute of Molecular Cell Biology and Genetics, Technische Universität Dresden (Autor:in)
  • Frank Jülicher - , Max-Planck-Institute for the Physics of Complex Systems, Zentrum für Systembiologie Dresden (CSBD) (Autor:in)
  • Guillaume Salbreux - , Max-Planck-Institute for the Physics of Complex Systems, The Francis Crick Institute (Autor:in)
  • Christian Dahmann - , Professur für Systembiologie und Genetik (Autor:in)

Abstract

Epithelial folding transforms simple sheets of cells into complex three-dimensional tissues and organs during animal development. Epithelial folding has mainly been attributed to mechanical forces generated by an apically localized actomyosin network, however, contributions of forces generated at basal and lateral cell surfaces remain largely unknown. Here we show that a local decrease of basal tension and an increased lateral tension, but not apical constriction, drive the formation of two neighboring folds in developing Drosophila wing imaginal discs. Spatially defined reduction of extracellular matrix density results in local decrease of basal tension in the first fold; fluctuations in F-actin lead to increased lateral tension in the second fold. Simulations using a 3D vertex model show that the two distinct mechanisms can drive epithelial folding. Our combination of lateral and basal tension measurements with a mechanical tissue model reveals how simple modulations of surface and edge tension drive complex three-dimensional morphological changes.

Details

OriginalspracheEnglisch
Aufsatznummer4620
FachzeitschriftNature Communications
Jahrgang9
Ausgabenummer1
PublikationsstatusVeröffentlicht - 5 Nov. 2018
Peer-Review-StatusJa

Externe IDs

Scopus 85056276928

Schlagworte

DFG-Fachsystematik nach Fachkollegium

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

Bibliotheksschlagworte