Different storage conditions influence biocompatibility and physicochemical properties of iron oxide nanoparticles

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Jan Zaloga - , Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Christina Janko - , Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Rohit Agarwal - , Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Johannes Nowak - , Professur für Magnetofluiddynamik, Mess- und Automatisierungstechnik (Autor:in)
  • Robert Müller - , Leibniz-Institut für Photonische Technologien (Autor:in)
  • Aldo R. Boccaccini - , Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Geoffrey Lee - , Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Stefan Odenbach - , Professur für Magnetofluiddynamik, Mess- und Automatisierungstechnik (Autor:in)
  • Stefan Lyer - , Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Christoph Alexiou - , Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)

Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted increasing attention in many biomedical fields. In magnetic drug targeting SPIONs are injected into a tumour supplying artery and accumulated inside the tumour with a magnet. The effectiveness of this therapy is thus dependent on magnetic properties, stability and biocompatibility of the particles. A good knowledge of the effect of storage conditions on those parameters is of utmost importance for the translation of the therapy concept into the clinic and for reproducibility in preclinical studies. Here, core shell SPIONs with a hybrid coating consisting of lauric acid and albumin were stored at different temperatures from 4 to 45 °C over twelve weeks and periodically tested for their physicochemical properties over time. Surprisingly, even at the highest storage temperature we did not observe denaturation of the protein or colloidal instability. However, the saturation magnetisation decreased by maximally 28.8% with clear correlation to time and storage temperature. Furthermore, the biocompatibility was clearly affected, as cellular uptake of the SPIONs into human T-lymphoma cells was crucially dependent on the storage conditions. Taken together, the results show that the particle properties undergo significant changes over time depending on the way they are stored.

Details

OriginalspracheEnglisch
Seiten (von - bis)9368-9384
Seitenumfang17
FachzeitschriftInternational journal of molecular sciences
Jahrgang16
Ausgabenummer5
PublikationsstatusVeröffentlicht - 24 Apr. 2015
Peer-Review-StatusJa

Externe IDs

PubMed 25918940
ORCID /0000-0002-4179-2273/work/173053903

Schlagworte

Schlagwörter

  • Colloidal stability, Iron oxide biocompatibility, Iron oxide nanoparticles, Magnetic drug targeting, Magnetite maghemite biocompatibility, Nanomedicine, Nanoparticle stability