Differences in apical and basal mechanics regulate compliance of curved epithelia

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Amaury Perez-Tirado - , Georg-August-Universität Göttingen (Autor:in)
  • Ulla Unkelbach - , Georg-August-Universität Göttingen (Autor:in)
  • Tabea A. Oswald - , Georg-August-Universität Göttingen (Autor:in)
  • Johannes Rheinlaender - , Eberhard Karls Universität Tübingen (Autor:in)
  • Tilman E. Schäffer - , Eberhard Karls Universität Tübingen (Autor:in)
  • Markus Mukenhirn - , Professur für Biophysik (Autor:in)
  • Alf Honigmann - , Professur für Biophysik (Autor:in)
  • Andreas Janshoff - , Georg-August-Universität Göttingen (Autor:in)

Abstract

Epithelial tissues form thin flexible sheets that are subject to external and internal stresses originating from osmotic and mechanical imbalances. How the polarized interfaces of epithelial cells dissipate mechanical energy to avoid fracture is not well understood. We created two different tissue models with opposite polarity, hemicysts and cysts, both enclosing a lumen. We probed resistance to deformation on the level of single cells as well as in-plane dilatation of the entire tissue putting load on cell-cell connections. A viscoelastic model is derived that provides a quantitative understanding of how apical-basal polarization helps to mitigate mechanical stress on short time scales. The basal actomyosin cortex and cell-cell contacts are essential for the elasticity and resilience of tissue, while the apical surface is soft and harbors excess area to alleviate lateral stress, which is important for the tissue to cope with fast changes in Laplace pressure.

Details

OriginalspracheEnglisch
Aufsatznummer102485
FachzeitschriftCell Reports Physical Science
Jahrgang6
Ausgabenummer3
PublikationsstatusVeröffentlicht - 19 März 2025
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-0475-3790/work/190134723

Schlagworte

Schlagwörter

  • cellular cortex, epithelial cells, polarity, tissue tension, viscoelasticity