DFA-Net: A Compiler-Specific Neural Architecture for Robust Generalization in Data Flow Analyses
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Data flow analysis is fundamental to modern program optimization and verification, serving as a critical foundation for compiler transformations. As machine learning increasingly drives compiler tasks, the need for models that can implicitly understand and correctly reason about data flow properties becomes crucial for maintaining soundness. State-of-the-art machine learning methods, especially graph neural networks (GNNs), face challenges in generalizing beyond training scenarios due to their limited ability to perform large propagations. We present DFA-Net, a neural network architecture tailored for compilers that systematically generalizes. It emulates the reasoning process of compilers, facilitating the generalization of data flow analyses from simple to complex programs. The architecture decomposes data flow analyses into specialized neural networks for initialization, transfer, and meet operations, explicitly incorporating compiler-specific knowledge into the model design. We evaluate DFA-Net on a data flow analysis benchmark from related work and demonstrate that our compiler-specific neural architecture can learn and systematically generalize on this task. DFA-Net demonstrates superior performance over traditional GNNs in data flow analysis, achieving F1 scores of 0.761 versus 0.009 for data dependencies and 0.989 versus 0.196 for dominators at high complexity levels, while maintaining perfect scores for liveness and reachability analyses where GNNs struggle significantly.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | CC 2025 - Proceedings of the 34th ACM SIGPLAN International Conference on Compiler Construction |
| Redakteure/-innen | Daniel Kluss, Sara Achour, Jens Palsberg |
| Herausgeber (Verlag) | Association for Computing Machinery, Inc |
| Seiten | 92-103 |
| Seitenumfang | 12 |
| ISBN (elektronisch) | 9798400714078 |
| Publikationsstatus | Veröffentlicht - 25 Feb. 2025 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | CC: Compiler Construction |
|---|
Konferenz
| Titel | 34th ACM SIGPLAN International Conference on Compiler Construction |
|---|---|
| Kurztitel | CC 2025 |
| Veranstaltungsnummer | 34 |
| Beschreibung | co-located with CGO, PPoPP and HPCA |
| Dauer | 1 - 2 März 2025 |
| Ort | Westin Las Vegas |
| Stadt | Las Vegas |
| Land | USA/Vereinigte Staaten |
Externe IDs
| ORCID | /0000-0002-5007-445X/work/190572580 |
|---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Data Flow Analysis, Machine Learning, Neural Network Architecture