Development and validation of artificial intelligence-based prescreening of large-bowel biopsies taken in the UK and Portugal: a retrospective cohort study

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Mohsin Bilal - , University of Warwick, National University of Computer and Emerging Sciences, Islamabad (Autor:in)
  • Yee Wah Tsang - , University Hospitals Coventry and Warwickshire NHS Trust (Autor:in)
  • Mahmoud Ali - , University Hospitals Coventry and Warwickshire NHS Trust (Autor:in)
  • Simon Graham - , University of Warwick, Histofy Ltd (Autor:in)
  • Emily Hero - , University Hospitals of Leicester NHS Trust, University Hospitals Coventry and Warwickshire NHS Trust (Autor:in)
  • Noorul Wahab - , University of Warwick (Autor:in)
  • Katherine Dodd - , University Hospitals Coventry and Warwickshire NHS Trust (Autor:in)
  • Harvir Sahota - , University Hospitals Coventry and Warwickshire NHS Trust (Autor:in)
  • Shaobin Wu - , East Suffolk and North Essex NHS Foundation Trust (Autor:in)
  • Wenqi Lu - , University of Warwick (Autor:in)
  • Mostafa Jahanifar - , University of Warwick (Autor:in)
  • Andrew Robinson - , University Hospitals Coventry and Warwickshire NHS Trust (Autor:in)
  • Ayesha Azam - , University Hospitals Coventry and Warwickshire NHS Trust (Autor:in)
  • Ksenija Benes - , Royal Wolverhampton Hospitals NHS Trust (Autor:in)
  • Mohammed Nimir - , University Hospitals Coventry and Warwickshire NHS Trust (Autor:in)
  • Katherine Hewitt - , University Hospitals Coventry and Warwickshire NHS Trust (Autor:in)
  • Abhir Bhalerao - , University of Warwick (Autor:in)
  • Hesham Eldaly - , University Hospitals Coventry and Warwickshire NHS Trust (Autor:in)
  • Shan E.Ahmed Raza - , University of Warwick (Autor:in)
  • Kishore Gopalakrishnan - , University Hospitals Coventry and Warwickshire NHS Trust (Autor:in)
  • Fayyaz Minhas - , University of Warwick (Autor:in)
  • David Snead - , University of Warwick, Histofy Ltd, University Hospitals Coventry and Warwickshire NHS Trust (Autor:in)
  • Nasir Rajpoot - , University of Warwick, Histofy Ltd, Alan Turing Institute, University Hospitals Coventry and Warwickshire NHS Trust (Autor:in)

Abstract

Background: Histopathological examination is a crucial step in the diagnosis and treatment of many major diseases. Aiming to facilitate diagnostic decision making and improve the workload of pathologists, we developed an artificial intelligence (AI)-based prescreening tool that analyses whole-slide images (WSIs) of large-bowel biopsies to identify typical, non-neoplastic, and neoplastic biopsies. Methods: This retrospective cohort study was conducted with an internal development cohort of slides acquired from a hospital in the UK and three external validation cohorts of WSIs acquired from two hospitals in the UK and one clinical laboratory in Portugal. To learn the differential histological patterns from digitised WSIs of large-bowel biopsy slides, our proposed weakly supervised deep-learning model (Colorectal AI Model for Abnormality Detection [CAIMAN]) used slide-level diagnostic labels and no detailed cell or region-level annotations. The method was developed with an internal development cohort of 5054 biopsy slides from 2080 patients that were labelled with corresponding diagnostic categories assigned by pathologists. The three external validation cohorts, with a total of 1536 slides, were used for independent validation of CAIMAN. Each WSI was classified into one of three classes (ie, typical, atypical non-neoplastic, and atypical neoplastic). Prediction scores of image tiles were aggregated into three prediction scores for the whole slide, one for its likelihood of being typical, one for its likelihood of being non-neoplastic, and one for its likelihood of being neoplastic. The assessment of the external validation cohorts was conducted by the trained and frozen CAIMAN model. To evaluate model performance, we calculated area under the convex hull of the receiver operating characteristic curve (AUROC), area under the precision-recall curve, and specificity compared with our previously published iterative draw and rank sampling (IDaRS) algorithm. We also generated heat maps and saliency maps to analyse and visualise the relationship between the WSI diagnostic labels and spatial features of the tissue microenvironment. The main outcome of this study was the ability of CAIMAN to accurately identify typical and atypical WSIs of colon biopsies, which could potentially facilitate automatic removing of typical biopsies from the diagnostic workload in clinics. Findings: A randomly selected subset of all large bowel biopsies was obtained between Jan 1, 2012, and Dec 31, 2017. The AI training, validation, and assessments were done between Jan 1, 2021, and Sept 30, 2022. WSIs with diagnostic labels were collected between Jan 1 and Sept 30, 2022. Our analysis showed no statistically significant differences across prediction scores from CAIMAN for typical and atypical classes based on anatomical sites of the biopsy. At 0·99 sensitivity, CAIMAN (specificity 0·5592) was more accurate than an IDaRS-based weakly supervised WSI-classification pipeline (0·4629) in identifying typical and atypical biopsies on cross-validation in the internal development cohort (p<0·0001). At 0·99 sensitivity, CAIMAN was also more accurate than IDaRS for two external validation cohorts (p<0·0001), but not for a third external validation cohort (p=0·10). CAIMAN provided higher specificity than IDaRS at some high-sensitivity thresholds (0·7763 vs 0·6222 for 0·95 sensitivity, 0·7126 vs 0·5407 for 0·97 sensitivity, and 0·5615 vs 0·3970 for 0·99 sensitivity on one of the external validation cohorts) and showed high classification performance in distinguishing between neoplastic biopsies (AUROC 0·9928, 95% CI 0·9927–0·9929), inflammatory biopsies (0·9658, 0·9655–0·9661), and atypical biopsies (0·9789, 0·9786–0·9792). On the three external validation cohorts, CAIMAN had AUROC values of 0·9431 (95% CI 0·9165–0·9697), 0·9576 (0·9568–0·9584), and 0·9636 (0·9615–0·9657) for the detection of atypical biopsies. Saliency maps supported the representation of disease heterogeneity in model predictions and its association with relevant histological features. Interpretation: CAIMAN, with its high sensitivity in detecting atypical large-bowel biopsies, might be a promising improvement in clinical workflow efficiency and diagnostic decision making in prescreening of typical colorectal biopsies. Funding: The Pathology Image Data Lake for Analytics, Knowledge and Education Centre of Excellence; the UK Government's Industrial Strategy Challenge Fund; and Innovate UK on behalf of UK Research and Innovation.

Details

OriginalspracheEnglisch
Seiten (von - bis)e786-e797
FachzeitschriftThe Lancet Digital Health
Jahrgang5
Ausgabenummer11
PublikationsstatusVeröffentlicht - Nov. 2023
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 37890902