Designing random sample synopses with outliers
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Random sampling is one of the most widely used means to build synopses of large datasets because random samples can be used for a wide range of analytical tasks. Unfortunately, the quality of the estimates derived from a sample is negatively affected by the presence of "outliers" in the data. In this paper, we show how to circumvent this shortcoming by constructing outlier-aware sample synapses. Our approach extends the well-known outlier indexing scheme to multiple aggregation columns.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | Proceedings of the 2008 IEEE 24th International Conference on Data Engineering, ICDE'08 |
| Seiten | 1400-1402 |
| Seitenumfang | 3 |
| Publikationsstatus | Veröffentlicht - 2008 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | International Conference on Data Engineering (ICDE) |
|---|---|
| ISSN | 1063-6382 |
Konferenz
| Titel | 2008 IEEE 24th International Conference on Data Engineering, ICDE'08 |
|---|---|
| Dauer | 7 - 12 April 2008 |
| Stadt | Cancun |
| Land | Mexiko |
Externe IDs
| Scopus | 52649105862 |
|---|---|
| ORCID | /0000-0001-8107-2775/work/199215652 |