Design Space Exploration for CNN Offloading to FPGAs at the Edge

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

AI-based IoT applications relying on heavy-load deep learning algorithms like CNNs challenge IoT devices that are restricted in energy or processing capabilities. Edge computing offers an alternative by allowing the data to get offloaded to so-called edge servers with hardware more powerful than IoT devices and physically closer than the cloud. However, the increasing complexity of data and algorithms and diverse conditions make even powerful devices, such as those equipped with FPGAs, insufficient to cope with the current demands. In this case, optimizations in the algorithms, like pruning and early-exit, are mandatory to reduce the CNNs computational burden and speed up inference processing. With that in mind, we propose ExpOL, which combines the pruning and early-exit CNN optimizations in a system-level FPGA-based IoT-Edge design space exploration. Based on a user-defined multi-target optimization, ExpOL delivers designs tailored to specific application environments and user needs. When evaluated against state-of-the-art FPGA-based accelerators (either local or offloaded), designs produced by ExpOL are more power-efficient (by up to 2times) and process inferences at higher user quality of experience (by up to 12.5%).

Details

OriginalspracheEnglisch
Titel2023 IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2023 - Proceedings
Redakteure/-innenFernanda Kastensmidt, Ricardo Reis, Aida Todri-Sanial, Hai Li, Carolina Metzler
Herausgeber (Verlag)IEEE Computer Society
Seitenumfang6
ISBN (elektronisch)979-8-3503-2769-4
PublikationsstatusVeröffentlicht - 2023
Peer-Review-StatusJa

Publikationsreihe

ReiheIEEE Computer Society Annual Symposium on VLSI
ISSN2159-3477

Konferenz

Titel21th IEEE Computer Society Annual Symposium on VLSI
KurztitelISVLSI 2023
Veranstaltungsnummer21
Dauer20 - 23 Juni 2023
Webseite
OrtRecanto Cataratas hotel
StadtFoz do Iguacu
LandBrasilien

Externe IDs

ORCID /0000-0002-5007-445X/work/160049118

Schlagworte

Schlagwörter

  • CNN, Edge Computing, FPGA, IoT, Offloading

Bibliotheksschlagworte