DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Eldar Insafutdinov - , Max-Planck-Institut für Informatik (Autor:in)
  • Leonid Pishchulin - , Max-Planck-Institut für Informatik (Autor:in)
  • Bjoern Andres - , Max-Planck-Institut für Informatik (Autor:in)
  • Mykhaylo Andriluka - , Max-Planck-Institut für Informatik, Stanford University (Autor:in)
  • Bernt Schiele - , Max-Planck-Institut für Informatik (Autor:in)

Abstract

The goal of this paper is to advance the state-of-the-art of articulated pose estimation in scenes with multiple people. To that end we contribute on three fronts. We propose (1) improved body part detectors that generate effective bottom-up proposals for body parts; (2) novel image-conditioned pairwise terms that allow to assemble the proposals into a variable number of consistent body part configurations; and (3) an incremental optimization strategy that explores the search space more efficiently thus leading both to better performance and significant speed-up factors. Evaluation is done on two single-person and two multi-person pose estimation benchmarks. The proposed approach significantly outperforms best known multi-person pose estimation results while demonstrating competitive performance on the task of single person pose estimation (Models and code available at http://pose.mpi-inf.mpg.de).

Details

OriginalspracheEnglisch
TitelComputer Vision – ECCV 2016
Redakteure/-innenBastian Leibe, Jiri Matas, Nicu Sebe, Max Welling
Herausgeber (Verlag)Springer, Cham
Seiten34–50
ISBN (elektronisch)978-3-319-46466-4
ISBN (Print)978-3-319-46465-7
PublikationsstatusVeröffentlicht - 2016
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheLecture Notes in Computer Science
Band9910
ISSN0302-9743

Externe IDs

Scopus 84990033515
ORCID /0000-0001-5036-9162/work/143781900