DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
The goal of this paper is to advance the state-of-the-art of articulated pose estimation in scenes with multiple people. To that end we contribute on three fronts. We propose (1) improved body part detectors that generate effective bottom-up proposals for body parts; (2) novel image-conditioned pairwise terms that allow to assemble the proposals into a variable number of consistent body part configurations; and (3) an incremental optimization strategy that explores the search space more efficiently thus leading both to better performance and significant speed-up factors. Evaluation is done on two single-person and two multi-person pose estimation benchmarks. The proposed approach significantly outperforms best known multi-person pose estimation results while demonstrating competitive performance on the task of single person pose estimation (Models and code available at http://pose.mpi-inf.mpg.de).
Details
| Originalsprache | Englisch |
|---|---|
| Titel | Computer Vision – ECCV 2016 |
| Redakteure/-innen | Bastian Leibe, Jiri Matas, Nicu Sebe, Max Welling |
| Herausgeber (Verlag) | Springer, Cham |
| Seiten | 34–50 |
| ISBN (elektronisch) | 978-3-319-46466-4 |
| ISBN (Print) | 978-3-319-46465-7 |
| Publikationsstatus | Veröffentlicht - 2016 |
| Peer-Review-Status | Ja |
| Extern publiziert | Ja |
Publikationsreihe
| Reihe | Lecture Notes in Computer Science |
|---|---|
| Band | 9910 |
| ISSN | 0302-9743 |
Externe IDs
| Scopus | 84990033515 |
|---|---|
| ORCID | /0000-0001-5036-9162/work/143781900 |