Deep Memristive Cellular Neural Networks for Image Classification

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

We present simulation results of a deep cellular neural network leveraging memristive dynamics to classify images from standard datasets. We have investigated the use of both volatile (NbO2-Mott) and non-volatile (TaOx) memristive devices as output nonlinearity in neural networks. We simulated deep neural networks using these devices and compared their image classification accuracies on commonly investigated datasets to traditional convolutional and cellular architectures of similar complexity. Our results reveal that the exploitation of memristive dynamics in cellular structures can increase classification accuracy by more than 2.5 percent as compared to the traditional convolutional implementations.

Details

OriginalspracheEnglisch
Titel2022 IEEE 22nd International Conference on Nanotechnology, NANO 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
Seiten457-460
Seitenumfang4
ISBN (elektronisch)9781665452250
ISBN (Print)978-1-6654-5226-7
PublikationsstatusVeröffentlicht - 8 Nov. 2022
Peer-Review-StatusJa

Publikationsreihe

ReiheIEEE Conference on Nanotechnology
Band2022-July
ISSN1944-9399

Konferenz

Titel22nd IEEE International Conference on Nanotechnology
KurztitelNANO 2022
Veranstaltungsnummer22
Dauer4 - 8 Juli 2022
Webseite
OrtBalearic Islands University (UIB)
StadtPalma de Mallorca
LandSpanien

Externe IDs

ORCID /0000-0001-7436-0103/work/142240379