Deep Learning for the Gaussian Wiretap Channel

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Rick Fritschek - , Freie Universität (FU) Berlin (Autor:in)
  • Rafael F. Schaefer - , Technische Universität Berlin (Autor:in)
  • Gerhard Wunder - , Freie Universität (FU) Berlin (Autor:in)

Abstract

End-to-end learning of communication systems with neural networks and particularly autoencoders is an emerging research direction which gained popularity in the last year. In this approach, neural networks learn to simultaneously optimize encoding and decoding functions to establish reliable message transmission. In this paper, this line of thinking is extended to communication scenarios in which an eavesdropper must further be kept ignorant about the communication. The secrecy of the transmission is achieved by utilizing a modified secure loss function based on cross-entropy which can be implemented with state-of-the-art machine-learning libraries. This secure loss function approach is applied in a Gaussian wiretap channel setup, for which it is shown that the neural network learns a trade-off between reliable communication and information secrecy by clustering learned constellations. As a result, an eavesdropper with higher noise cannot distinguish between the symbols anymore.

Details

OriginalspracheEnglisch
Titel2019 IEEE International Conference on Communications, ICC 2019 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)978-1-5386-8088-9
PublikationsstatusVeröffentlicht - Mai 2019
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheIEEE International Conference on Communications (ICC)
Band2019-May
ISSN1550-3607

Konferenz

Titel2019 IEEE International Conference on Communications, ICC 2019
Dauer20 - 24 Mai 2019
StadtShanghai
LandChina

Externe IDs

ORCID /0000-0002-1702-9075/work/165878330