Deep Generative Models for Fast Photon Shower Simulation in ATLAS
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
- Professur für Experimentelle Teilchenphysik
- Professur für Teilchenphysik
- Institut für Kern- und Teilchenphysik (IKTP)
- Aix-Marseille Université
- University of Oklahoma
- University of Massachusetts
- CERN
- Georg-August-Universität Göttingen
- Royal Holloway University of London
- Brookhaven National Laboratory
- Mohammed V University in Rabat
- Tel Aviv University
- Technion-Israel Institute of Technology
- New York University
- Pontificia Universidad Católica de Chile
- National Institute for Nuclear Physics
- Abdus Salam International Centre for Theoretical Physics
- King's College London (KCL)
- Johannes Gutenberg-Universität Mainz
- Laboratoire d'Annecy-le-Vieux de Physique des Particules LAPP
- AGH University of Science and Technology
- University of Toronto
- Brandeis University
- Northern Illinois University
- Istanbul University
- Universität Genf
- Rutherford Appleton Laboratory
- University of California at Santa Cruz
- Institut de Física d’Altes Energies (IFAE)
- Università degli Studi di Pavia
- Alexandru Ioan Cuza University of Iaşi
- Laboratório de Instrumentação e Física Experimental de Partículas
- University of Granada
- Consejo Superior de Investigaciones Científicas (CSIC)
- Azerbaijan National Academy of Sciences
- McGill University
- Deutsches Elektronen-Synchrotron (DESY)
- Technische Universität Dresden
- University of Warwick
Abstract
The need for large-scale production of highly accurate simulated event samples for the extensive physics programme of the ATLAS experiment at the Large Hadron Collider motivates the development of new simulation techniques. Building on the recent success of deep learning algorithms, variational autoencoders and generative adversarial networks are investigated for modelling the response of the central region of the ATLAS electromagnetic calorimeter to photons of various energies. The properties of synthesised showers are compared with showers from a full detector simulation using geant4. Both variational autoencoders and generative adversarial networks are capable of quickly simulating electromagnetic showers with correct total energies and stochasticity, though the modelling of some shower shape distributions requires more refinement. This feasibility study demonstrates the potential of using such algorithms for ATLAS fast calorimeter simulation in the future and shows a possible way to complement current simulation techniques.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 7 |
Fachzeitschrift | Computing and Software for Big Science |
Jahrgang | 8 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - Dez. 2024 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0001-6480-6079/work/173049550 |
---|