Deconstructing Methanosarcina acetivorans into an acetogenic archaeon

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Christian Schone - , Technische Universität Dresden (Autor:in)
  • Anja Poehlein - , Georg-August-Universität Göttingen (Autor:in)
  • Nico Jehmlich - , Helmholtz-Zentrum für Umweltforschung (UFZ) (Autor:in)
  • Norman Adlung - , Aalto University (Autor:in)
  • Rolf Daniel - , Georg-August-Universität Göttingen (Autor:in)
  • Martin von Bergen - , Helmholtz-Zentrum für Umweltforschung (UFZ) (Autor:in)
  • Silvan Scheller - , Aalto University (Autor:in)
  • Michael Rother - , Institut für Mikrobiologie, Technische Universität Dresden (Autor:in)

Abstract

The reductive acetyl-coenzyme A (acetyl-CoA) pathway, whereby carbon dioxide is sequentially reduced to acetyl-CoA via coenzyme-bound C1 intermediates, is the only autotrophic pathway that can at the same time be the means for energy conservation. A conceptually similar metabolism and a key process in the global carbon cycle is methanogenesis, the biogenic formation of methane. All known methanogenic archaea depend on methanogenesis to sustain growth and use the reductive acetyl-CoA pathway for autotrophic carbon fixation. Here, we converted a methanogen into an acetogen and show that Methanosarcina acetivorans can dispense with methanogenesis for energy conservation completely. By targeted disruption of the methanogenic pathway, followed by adaptive evolution, a strain was created that sustained growth via carbon monoxide–dependent acetogenesis. A minute flux (less than 0.2% of the carbon monoxide consumed) through the methane-liberating reaction remained essential, indicating that currently living methanogens utilize metabolites of this reaction also for anabolic purposes. These results suggest that the metabolic flexibility of methanogenic archaea might be much greater than currently known. Also, our ability to deconstruct a methanogen into an acetogen by merely removing cellular functions provides experimental support for the notion that methanogenesis could have evolved from the reductive acetyl-coenzyme A pathway.

Details

OriginalspracheEnglisch
Aufsatznummere2113853119
FachzeitschriftProceedings of the National Academy of Sciences of the United States of America : PNAS
Jahrgang119
Ausgabenummer2
PublikationsstatusVeröffentlicht - 11 Jan. 2022
Peer-Review-StatusJa

Externe IDs

PubMed 34992140

Schlagworte

DFG-Fachsystematik nach Fachkollegium

Ziele für nachhaltige Entwicklung

ASJC Scopus Sachgebiete

Schlagwörter

  • Acetogenic, Acetyl-CoA pathway, Methanogenic, Methanosarcina